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Preface

This book has its origin in my experience teaching Linear Algebra

to Computer Science students at Singapore Management University.

Traditionally, Linear Algebra is taught as a pure mathematics course,

almost as an afterthought, not fully integrated with any other applied

curriculum. That certainly was how it was taught to me. The course

I was teaching, however, had a definite pedagogical objective of

bringing out the applicability and usefulness of Linear Algebra in

Computer Science, which is essentially applied mathematics. In the

era of machine learning and artificial intelligence, Linear Algebra is

the branch of mathematics that holds the most relevance to computing.

One question I got from one of my brightest students the first time

I taught the course was why they were forced to learn this particular

branch of mathematics. It was not a defiant or rebellious question, but

one of pure curiosity. I did not have a ready answer then, but I think I

have one now. When we embark on any profession, we have to start

with the tools of the trade. For instance, if we want to be a musician,

we have to learn the notes before we can perform. If we want to be a

writer, we need to know the vocabulary and grammar of our chosen

language first. Similarly, in order to be a computer scientist, we have

to have the necessary mathematical skills. And Linear Algebra is

arguably the most critical expertise needed, especially when it comes

to dealing with large quantities of data efficiently.
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Linear Algebra is a well­established field, and we can find several

resources freely available on the Internet. In writing this book, I have

made use of many of them. In fact, the whole process of writing can

be thought of as an exercise in curating the right pieces of information

at the right level, and standardizing them with consistent notations to

form a coherent and fluid narrative.

Mathematics books often tend to be dry, unreadable collections of

facts, theorems, proofs and problems. This type of discourse is under­

standable, given the nature of the subject that demands accuracy and

completeness, often at the expense of readability. My objective was

to write a book that would be read. For this reason, I set practicality

as my goal, and even used, dare I say this, humor to keep my reader

engaged.

I employed two more tricks to improve the readability. The first

one is to restrict the field (over which our vectors and matrices are

defined) to real numbers (R) because of its relevance to computer

science. The second trick is to pepper the text with “boxes,” which

are curious applications, background information, or other tidbits that

are topic­adjacent to the subject matter under discussion.

From experience, I know that a book of this length takes about a

year to write and another year to polish and publish. The first version

of this book was done and dusted in about three months, almost ten

times faster than normal. For this reason, it is continuously updated,

corrected and improved upon over the last couple of years. How

my students respond to the course on which the book is based will

also inspire further revisions. These new versions and/or editions are

made available periodically.

MANOJ THULASIDAS

Singapore

February 4, 2025



Introduction

I cannot teach anybody anything, I can only make them

think.

—Socrates

This book is for an introductory course in Linear Algebra. It

teaches the mathematical foundations of Linear Algebra to illustrate

their relevance to computer science and applications. It also prepares

the students for advanced numerical methods in computing, especially

in machine learning and data analytics. Designed for a first course in

Linear Algebra, this book will cover the basic concepts and techniques

of Linear Algebra and provide an appreciation of the wide application

of this discipline within the field of computer science.

The book will require development of some theoretical results,

with proofs and consequences employing some level of mathematical

rigor, algebraic manipulation, geometry and numerical algorithms.

However, the main focus will be on the computational aspects and

the applications of Linear Algebra.
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Regardless of how application­oriented we would like to make it,

Linear Algebra is a branch of pure mathematics. And in a textbook

written for a first course introducing it, we will have a hard time

staying away from the purely theoretical; however, Linear Algebra

touches upon so many aspects of the technologies that enhance our

modern life that we may discover interesting connections and appli­

cations even from the most basic of its concepts. This book will bring

out such connections wherever possible, thereby attempting to be an

intellectual treat to its readers.

I.1 Why Learn Linear Algebra?

From a purely mathematical perspective, Linear Algebra is a branch

that takes us to mathematical maturity, whereby we start to appreciate

the interconnections among its various branches, such as algebra (as

in solving equations) and geometry (such as vector spaces), advanced

algorithms and mathematical intuitions behind them and so on.

We have a few major branches of mathematics that are highly rel­

evant to scientific computing, numerical methods and technology in

general. The most important ones among them are Calculus (of the

multivariable kind) and Linear Algebra. Roughly speaking, Calculus

corresponds to the analog world–concerned with continuous vari­

ables, their evolution, effects on others etc. It plays an enormously

important role in all branches of engineering and physical sciences.

However, the world is digital now. And, the mathematics of digital

technology, at a high level, is Linear Algebra.

For computer science specifically, we have one more relevant

branch of mathematics, which is discrete math. This one is a lot

of fun, full of puzzles and brain­teasers. It involves number theory,

game theory and other fun stuff.

Relevant to all fields where data and number crunching are involved

(ranging from social sciences to medicine to data science) is Statistics

and Probability. Later on, we will see some of the statistical quantities

(covariance and its principal components, for instance) and even

certain quintessentially calculus operations (error minimization in

linear regression, viewed as a projection operation) coming out of

operations specific to Linear Algebra in an elegant fashion.
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While we can list a number of impressive applications of Linear

Algebra in computer science (such as the page rank algorithm that

made Google what it is, and certain image and data compression

algorithms), the real role of this branch of mathematics is similar to

that of the alphabet or vocabulary or grammar in learning a language.

If we want to be a writer, for instance, we have to be good at all these

aspects of the language of our choice. Having these background

skills alone is not enough; it will not make us a writer. But what

is absolutely certain is that without these skills, we will never be a

writer, not a good one at any rate.

Linear Algebra, in much the same way, is really the basic backdrop

of several of the pivotal numerical algorithms in computer science.

I.2 Learning Objectives and Competencies

The learning objectives of the book include imparting the knowledge

and the foundational concepts of Linear Algebra, as well as a set of

skills and an appreciation for its application in computing. Upon the

successful completion of a course based on this book, students should

have a sound understanding the following:

• The concept of linearity as it applies to expressions, functions

and transformations.

• The notion of vectors and matrices, their operations.

• Important characteristics of matrices, such as its four funda­

mental subspaces, rank, determinant, eigenvalues and eigen­

vectors, different factorizations, etc.

• How to use the characteristics of a matrix to solve a linear

system of equations using algorithms such as Gaussian and

Gauss­Jordan eliminations.

• Important concepts of vector spaces such as independence,

basis, dimensions, orthogonality, Gram­Schmidt process for

orthonormalization, etc.

• Properties of special categories of matrices such as symmetric,

positive definite, etc.

• Eigenvalue, singular value and other decompositions, and their

applications.
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• Several algorithms in and using Linear Algebra, like linear re­

gression, QR and power iteration for eigen­analysis, Cholesky

decomposition etc.

The learning objectives listed above translate to the following learn­

ing outcomes or competencies in the students. Upon the successful

completion of a course based on this book, students should be able to

perform the following (both manually and in software tools such as

SageMath):

1. Determine the existence and uniqueness of the solution of a

linear system, and find its complete solution by choosing an

effective method such as Gaussian elimination, factorization,

diagonalization, etc.

2. Test for linear independence of vectors, orthogonality of vectors

and vector spaces.

3. Compute the rank, determinant, inverse, Gram­Schmidt or­

thogonalization and different factorizations of a matrix.

4. Visualize the four fundamental subspaces of a matrix, and iden­

tify their relation to systems of linear equations, and find their

dimension and basis.

5. Identify special properties of a matrix, such as symmetry, pos­

itive definiteness, etc., and use this information to facilitate the

calculation of matrix characteristics.

6. Describe the use of mathematical techniques from linear alge­

bra as applied to computer applications.

7. Compute eigenvalues and eigenvectors of a matrix, use them

for diagonalizing, taking its powers, and applying them to solve

advanced problems. [Optional Topic]

8. Perform diagonalization and the singular value decomposition

of a matrix, and identify its principal components. [Optional

Topic]

I.3 Organization

The book is organized in four parts, as listed below. For courses

based on this book, the same topic flow is recommended, although
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it may be necessary to shuffle some of the sub­topics for clarity and

ease of understanding.

Part I: Numerical Computations

In the first part, we will go over the basics of Linear Algebra as

it is usually taught in an undergraduate curriculum. Here, we will

be working with vectors and matrices as represented by arrays of

numbers, and their basic operations.

1. Functions, Equations and Linearity

2. Vectors, Matrices and Operations

3. Transposes and Determinants

Part II: Algebraic View

After covering the basic operations, we move on to the view of ma­

trices and vectors as encoding linear equations, and ways of solving

them.

4. Gaussian Elimination

5. Ranks and Inverses of Matrices

Part III: Geometric View

In the third part, we will look at the beautiful geometry that arises

from vectors and matrices, from the perspective of the spaces they

define, and their properties and operations.

6. Vector Spaces, Basis and Dimensions

7. Change of Basis, Orthogonality and Gram­Schmidt

8. Review and Recap

9. The Four Fundamental Spaces

10. Projection, Least Squares and Linear Regression

Part IV: Advanced Topics

In the last part, we will discuss the operations on matrices such as

eigenvalue and singular value decompositions, their significance and

applications.
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11. Eigenvalue Decomposition and Diagonalization

12. Special Matrices, Similarity and Algorithms

13. Singular Value Decomposition

Part IV of the book, Advanced Topics, although significant as

the basis of many algorithms, may be too difficult in an introductory

undergraduate course in Linear Algebra. It may be revisited later on

in the curriculum.

Even though the emphasis in each part will be as declared in its

title, we will see that it is difficult to segment Linear Algebra into

watertight compartments like Numeric, Algebraic, Geometric etc.

We will necessarily see some overlap.

The book will also list some of the tools and resources to be used,

especially to illustrate the computing applications. It will also show

that most of the numeric calculations that used to be performed by

hand are now carried out using mathematical programs such as Matlab

or SageMath, the latter being our tool of choice.

I.3.1 Our Focus

The value we can find in learning Linear Algebra is not in developing

arithmetic dexterity in performing numeric computations, for we can

find all such numerical computations neatly implemented in tools like

SageMath. Even some symbolic manipulations are found in SageMath

or other tools such as Mathematica. What we focus on, therefore, are

the aspects of Linear Algebra that will improve our intuitive insights

and conceptual understanding. Our hope is that these aspects will

help us be better computer and data scientists. For this reason, the

exercises that follow every chapter after a chapter summary are very

different from what we usually find in books in Linear Algebra; they

are mainly objective type questions testing our grasp of the theoretical,

conceptual and intuitive aspects.



Part I

Numerical
Computations



1
Functions, Equations and

Linearity

It is a monstrous thing to force a child to learn Latin

or Greek or mathematics on the ground that they are an

indispensable gymnastic for the mental powers. It would

be monstrous even if it were true.

—George Bernard Shaw

1.1 Linearity

Formally, Linear Algebra deals with objects (mathematical entities)

that transform in a linear fashion. After all, it has the word “Linear” in

its name. Let’s define linearity, along with what “transform” means.

In order to do that, however, we have to take a step back and look at

some of the foundations.

1.1.1 Expressions and Functions

When we combine one or more mathematical variables in a valid way

(using operations like addition, multiplication, exponentiation etc.,

or using functions like sine, logarithm etc.), we get a mathematical
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expression. Here are some examples of expressions: 3x, sin x, x +
y,Ax, ln x.

A variable is a symbol (like a, x, A etc.) that is a placeholder or

a container for a value. Note that the value can be a single number,

or a complicated one like a vector or a matrix, although we have not

defined them yet. For now, however, we are thinking of the variables

as placeholders of single, real values. For a variable x, we will

state that it is real using this mathematical jargon: x ∈ R where R

represents the set of all real numbers and ∈ says, “is a member of.”

When we have an expression (which is a combination of vari­

ables), we can also think of it as a relationship between its value

and the set of variables it contains, which is what we mean by a

function. For example, 4x + y is an expression; f(x, y) = 4x + y
is a function. We usually write a function of a single variable as

f(x) = an expression in x. Some examples of single­variable func­

tions are: f(x) = 3x, f(x) = e−x2

. We require the functions to be

single­valued.

In other words, we can think of an expression as defining or speci­

fying a function, with the additional constraint that one set of inputs

(corresponding to the variables in the expression) gives one unique

output (which is the value of the expression). Examples:
√
x is an

expression, but f(x) =
√
x is not a function by our definition because

it gives two values for every x. However, f(x) = |√x | (where |y|
stands for the absolute value of y) is a function.

We can think of a function as a transformation: A mathematical

object that transforms the inputs to the outputs. Although we are

thinking of the inputs (x, y etc.) and the output (f(x, y)) as numeric

values, they can be other mathematical entities, like vectors and

matrices (to be defined). Again, for now, let’s limit ourselves to real

values of the inputs and outputs for our discussion now.

Linearity

Definition: We call a transformation (or a function) of a single, real

value (x ∈ R) linear if it satisfies the following two conditions:

• Homogeneity: When the value of x is multiplied by a real

number, the value of the function also gets multiplied by the

same number.

f(sx) = sf(x) ∀ s, x ∈ R
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This property of multiplicative scaling behavior is known as

homogeneity.

• Additivity: The output of the function for the sum of two

inputs is the sum of the corresponding outputs.

f(x+ x′) = f(x) + f(x′) ∀ x, x′ ∈ R

Here are some examples of linear functions: f(x) = 3x, f(x) = 0.

Some functions that are not linear would be: f(x) = x2, f(x) = 5.

Note that f(x) = mx + c is not linear if c ̸= 0 because it does not

satisfy the linearity conditions listed above. This fact may look weird

to us because we know that y = mx+ c is the equation to a line. We

will take a closer look at it very soon.

1.1.2 Equations and Equality

In order to understand why f(x) = mx + c is not linear, we have to

understand what an equation is, and, even more fundamentally, what

equality (or the equal sign, =) means. When we write f(x) = mx+c,
we are defining a function. The equal sign (=) in f(x) = mx + c is

one of assignment: We are assigning the symbol f to the function of

one variable mx + c, which is not a difficult concept for computer

scientists with exposure to programming languages1. This function,

indeed, is not a linear function according to our definition of linearity.

When we write y = mx+ c, on the other hand, we do not mean an

assignment or a definition. It is a statement of truth, or a recipé for

computing any y given a value for x. It is an equation. In fact, it is

an equation in two variables, x, y ∈ R. In other words, the equal sign

(=) in y = mx + c is an assertion of truth or a condition. We call

such assertions of truth equations. Our preferred form of equations

is: expression = constant, or function (which is a placeholder for

an expression) = constant. Therefore, we will write y = mx + c as

−mx+ y = c.
To summarize, equations in one variable have the form f(x) = b

(where x, b ∈ R, in our context). If the function f(x) (which is a

1Programming languages such as Python are procedural, where we specify assignments and
operations (or steps) to be performed on them. We have another class of programming
languages called functional, where we list statements of truth and specify mathematical
operations on the variables. Haskell is one of them.
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proxy for some, hitherto unspecified expression) is linear, we consider

the equation f(x) = b to be linear as well. In fact, in the case of

expressions (or functions) of one variable, we know a bit more than

that because we have defined what we mean by linearity: The only

possible form f(x) can take so that it is linear is ax. So the most

general linear equation of one variable is simply ax = b.
How do we define linearity for two (or more) variables? In par­

ticular, is y = mx + c (or, equivalently, −mx + y = c) a linear

equation? We know that mx + c is not a linear expression, and

f(x) = mx+c is not a linear function. But, −mx+y is a function of

two variables, f(x, y). In order to determine whether it is linear, the

linearity conditions listed earlier (homogeneity and additivity) need

to be generalized for multiple variables.

1.1.3 Linearity of Multivariable Functions

Let’s generalize the homogeneity property to two variables. For the

one variable case, it was f(sx) = sf(x) ∀ s, x ∈ R . For a two­

variable function f(x, y), let’s say that homogeneity is satisfied when

both variables are multiplied by the same scaling factor (or scalar).

f(sx, sy) = sf(x, y) ∀ s, x, y ∈ R

For one variable, the additivity property was f(x + x′) = f(x) +
f(x′) ∀ x, x′ ∈ R. Let’s generalize it as follows:

f(x+ x′, y + y′) = f(x, y) + f(x′, y′) ∀ x, y, x′, y′ ∈ R

If we define a new mathematical entity, consisting of two num­

bers (elements) in a specified order, for which scaling is defined as

scaling each element, and addition is defined as the addition of the

corresponding elements, we could reuse our original (one­variable)

linearity conditions for the two­variable case as well, or indeed for

the n­variable case. This mathematical entity (a group of numbers in

a specified order) is a vector. Let’s define it as a column of numbers,

with scaling and addition operations.

x =

[

x
y

]

sx =

[

sx
sy

]

x′ =

[

x′

y′

]

x+ x′ =

[

x+ x′

y + y′

]

Our vectorx has two real numbers in it, and we writex ∈ R2. We can

easily generalize the vectors such as x to n dimensions. All we have
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to do is write its n elements (say, x1, x2, · · · , xn) in a column. We

would then write x ∈ Rn. With these definitions and generalization,

we can restate the two linearity conditions as follows:

• Homogeneity: f(sx) = sf(x) ∀ s ∈ R,x ∈ Rn

• Additivity: f(x+ x′) = f(x) + f(x′) ∀x,x′ ∈ Rn

For the sake of completeness, let’s verify whether f(x, y) =
−mx + y is indeed linear. If we scale x and y by s, the value of

the function gets scaled by the same factor:

f(sx, sy) = −msx+ sy = s(−mx+ y) = sf(x, y)

Therefore, the homogeneity condition is satisfied. For the additivity

condition:

f(x+ x′, y + y′) = −m(x+ x′) + y + y′

= (−mx+ y) + (−mx′ + y′)

= f(x, y) + f(x′, y′)

Therefore, the second, additivity, condition also is satisfied, and

f(x, y) = −mx+ y is indeed linear. And the equation −mx+ y = c
is linear as well. To be clear, earlier we said mx+ c, as an expression

in (or f(x) = mx+c as a function of) one variable is not linear, which

is not in contradiction with the statement that f(x, y) = −mx+ y is

linear as a function of (or−mx+y as an expression in) two variables.

And −mx+ y = c is a linear equation in two variables.

1.1.4 Vectors and Matrices

We stated earlier that the most general linear equation of one variable

was ax = b. We start with the linear equation −mx + y = c. What

is the most general linear equation (or system of linear equations) in

two or n dimensions?

Let’s start by defining a multiplication operation between two vec­

tors: The product of two vectors is the sum of the products of the

corresponding elements of each of them. With this definition, and a

notational trick2 of writing the first of the two vectors horizontally,

2The reason for this trick is to have a generalized definition of the product of two matrices,
of which this vector multiplication will become a special case. We will go through matrix
multiplication in much more detail in the next chapter.
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we write:

[

a1 a2
]

[

x
y

]

= a1x+ a2y =⇒
[

−m 1
]

[

x
y

]

= −mx+ y

Our linear equation−mx+y = c and a more general a1x+a2y = b
then becomes:

[

−m 1
]

[

x
y

]

= c
[

a1 a2
]

[

x
y

]

= b

If we had one more equation, a21x+a22y = b2, we could add another

row in the compact notation above. In fact, the notation is capable of

handling as many equations as we like. For instance, if we had three

equations:

1. a11x+ a12y = b1
2. a21x+ a22y = b2
3. a31x+ a32y = b3

We could write the system of three equations, more compactly,





a11 a12
a21 a22
a31 a32





[

x
y

]

=





b1
b2
b3



 or Ax = b (1.1)

Here, the table of numbers we called A is a matrix. What we have

written down as Ax = b is a system of three linear equations (in

2­dimensions, but readily extended to n dimensions).

1.1.5 Linear Transformations

Now that we got a glimpse of vectors and matrices, and defined

what linearity means in the context of Linear Algebra, let’s quickly

summarize the discussion with linear transformations. A function

f(x) can be thought of as a transformation, or a mapping3. When we

write y = f(x), what we are saying is that we can transform for every

x ∈ R using f(x) and get a value of y ∈ R to which it is mapped. f is

a mapping from R to R. Of all possible functions f(x), the simplest

one is a linear transformation, f(x) = ax. In fact, it is the only form

3For our purposes, there is very little difference between functions, transformations and
mapping.
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of linear transformation in one dimension—the only one that respects

linearity as we defined it.

f(x) = ax, x ∈ R. f : R 7→ R

And the most general form of equation (in the form expression or

function = constant) in one dimension would be:

ax = b, a, b ∈ R

What is the simplest possible transformation from a multi­dimensional

space Rn to a different multi­dimensional space Rm? This turns out

to be the linear transformation encoded in a matrix.

y = Ax, x ∈ Rn,y ∈ Rm. A : Rn 7→ Rm

We can prove (as indeed we will, later on) that every linear trans­

formation Rn 7→ Rm has a unique matrix A associated with it. The

matrix A, therefore, represents a mapping from Rn to Rm, taking the

vector x and giving us the vector y. When we define an equation (as

expression = constant), we get the deceptively simple equation:

Ax = b

As we saw earlier, the equation Ax = b also represents a system

of linear equations. The properties of such systems as encoded in

the matrix A, the conditions under which the system can be solved,

and the geometry and intuitions behind it will become the rest of this

book.

1.2 The Big Picture

For our purposes in computer science, the most appropriate set of

numbers to build vectors and matrices is that of real numbers, arranged

in columns or rows or tables. A scalar is a member of the set of real

numbers, s ∈ R. It can also be thought of as a 1× 1 matrix. A vector

is a n×1 matrix, x ∈ Rn. Vectors of fewer than four components live

in spaces4 that we can understand and visualize: R2 is a plane and

4As we get more sophisticated later on, we will qualify this statement and draw a distinction
between coordinate spaces where we live and vector spaces where vectors live.
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R3 is the three­dimensional space we live in. We can extrapolate and

understand, if not visualize, dimensions higher than three, namely

Rn, n > 3, as well.

Matrices (such as data sets), on the other hand, live in spaces that

are harder to visualize: A ∈ Rm×n. However, as we will see, the

properties of these spaces are not unlike the spaces of vectors.

Although we will deal with vectors and matrices as arrays (columns

or tables) of numbers, it is important to keep in mind that they are, in

fact, abstract entities defined only by the operations (such as scaling,

addition, multiplication) specified on them.

In computer science, the representation of vectors and matrices

as arrays of numbers is the one that makes most sense because our

data sets tend to comprise numbers. However, if we can find other

entities on which we can specify the requisite set of operations, we

are allowed to treat them as vectors as well. This generalization,

though not critical in computer science, plays an important role in

the applications of Linear Algebra in other fields, most notably in

physics.

The whole point of Linear Algebra is that we do not have to think of

the representation; we can work with the properties of the underlying

entities. So, as the book progresses, we will stop worrying about the

individual elements of matrices or vectors. Towards the end, in Part

IV, we will go over some advanced applications of Linear Algebra,

where, our intuition will become completely abstract and independent

of any representation. We will then be in a position to apply such

intuitions to come up with efficient algorithms and computational

techniques.
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2
Vectors, Matrices and

Their Operations

So far as the theories of mathematics are about reality,

they are not certain; so far as they are certain, they are not

about reality.

—Albert Einstein

Vectors and matrices, along with the operations defined on them,

form the basis of Linear Algebra as we will learn in this book. In the

previous chapter, we got a glimpse of them. Now, let us look at them

in more detail and in a formal fashion.

2.1 Vectors

For our purposes in Computer Science, vectors are an ordered list of

numbers. The numbers are of the same type. In our case, typically

they are real numbers because data tends to be full of real numbers.

We would formally call the vectors by the type of the numbers. In

other words, our vectors are vectors over the field of real numbers.

The last statement calls for a digression to describe what a field

is, which is in the box below. If we have a m dimensional vector

x, we indicate its field by saying, x ∈ Rm. In our tool, SageMath,
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Groups, Rings and Fields

Group: A Group is a set of mathematical entities with one binary operation, the identity
of the operation and an inverse for every element with respect to that operation. The
operation needs to be commutative.

The set of all integers with addition defined will be an example. Zero is the identity,
for every number, its negative is the additive inverse.

Ring: A Ring is a set of mathematical entities with two binary operations (general­
ized versions of the arithmetic operations of addition and multiplication) with the key
properties:

• Addition is associative and commutative

• There is an additive identity, a zero

• Every element has an additive inverse

• Multiplication is associative

• Not necessary that multiplication be commutative

• Multiplication distributes over addition

• It need not have an multiplicative inverse

Classic examples of Rings are:

• Integers

• Integers modulo some Natural number greater than one

Field: A Field has (in addition to what Rings have):

• Multiplication is commutative

• Every nonzero element has a multiplicative inverse

Classic examples of Fields are:

• Rational numbers

• Real numbers

• Complex numbers

• Integers modulo a Prime number

A Field is a Ring with extra properties. And a Ring is a Group with extra properties.

we will see that vectors (and matrices) can be over the ring (see the

box titled Groups, Rings and Fields) of integers (Z, called ZZ in

SageMath), or the field of rationals (Q, QQ), real (R, RR) or complex

(C, CC) numbers1.

In order to build a realistic example of a vector that we might come

across in computer science, let’s think of a data set where we have

multiple observations with three quantities:

1See https://www.mathsisfun.com/sets/number-types.html for common sets of numbers
in mathematics.

https://www.mathsisfun.com/sets/number-types.html
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1. w: Weight in kg

2. h: Height in cm

3. a: Age in years

A sample data point could be a list of three values: (w, h, a) =
(76, 175, 51). We can think of this data point as a vector (over the

field2 of real numbers). Our vectors are always Column Vectors, or

numbers arranged in a column. Therefore, we write:

x =





76
175
51



 ∈ R3 (2.1)

A column vector is, in fact, a matrix of size m×1. Note that although

the numbers of the vector (also known as its elements, entries or

components) belong to the same field mathematically, they do not

have to signify the same physical quantity3. They do not need to have

the same physical significance. However, the order of the elements

in a vector is significant.

2.2 Vector Operations

2.2.1 Scalar Multiplication

We define the scalar multiplication of a vector with a number as the

follows: The product of the multiplication is a new vector with each

of its elements multiplied by the number. In other words, the number

(called scalar) scales the vector.

Scalar Multiplication

Definition: For any vector x and any scalar s, the result of scalar

2In computer science, the difference between using the rational ring instead of real field is
too subtle to worry about. It has to do with the definition of the norm (or the size) of a vector.
3In fact, the whole machinery of Linear Algebra is a big syntactical engine, yielding us
important insights into the underlying structure of the numbers under study. But it has little
semantic content or correspondence to the physical world, other than the insights themselves.
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multiplication (sx) is defined as follows:

∀ x =











x1

x2
...

xn











∈ Rn and s ∈ R, sx
def
=











sx1

sx2
...

sxn











∈ Rn (2.2)

We say that the set of vectors is closed under scalar multiplication,

which is a fancy way of saying that if we scale a vector, we get another

vector. Note that for a vector over a certain field (like R), the scalar

also belongs to the same field. In fact, it can be any number in that

field, including zero.

The fact that the scaling factor can be zero, and that the set of vectors

is closed under scalar multiplication has something to say about the

zero vector (denoted by 0, which is a vector whose elements are all

zeros). It has to be a vector too, because by scaling any vector with

the scalar zero, we get an entity with all zeros, and because the set

of vectors is closed under scalar multiplication, this entity has to be a

vector. The zero vector is special, just like zero is a special number.

Scalar multiplication is commutative: sx = xs. It is not a pre­

condition, but a consequence of the definition.
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Fig. 2.1 Example of scalar multiplication of a vector x ∈ R2. Note that all the scaled

versions lie on the same line defined by the original vector.

Figure 2.1 shows an example of scalar multiplication. The original

vector x ∈ R2 has elements 1 and 2, which we plot with one unit
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along the x axis, and two units along the y axis. The vector then is

an arrow from the origin to the point (1, 2), shown in red. Note how

the scaled versions (in blue, green and purple) of the vector are all

collinear with the original one. Note also that the line defined by the

original vector and its scaled versions all go through the origin.

2.2.2 Vector Addition

We define the addition of two vectors such that the result of the

addition is another vector whose elements are the sum of the cor­

responding elements in the two vectors. Note that the sum of two

vectors also is vector. In other words, the set of vectors is closed

under addition as well.

Vector Addition

Definition: For any two vector x1 and x2, the result of addition

(x1 + x2) is defined as follows:

∀x1 =











x11

x21
...

xn1











and x2 =











x12

x22
...

xn2











∈ Rn,

x1 + x2

def
=











x11 + x12

x21 + x22
...

xn1 + xn2











∈ Rn

(2.3)

Vector addition also is commutative (x1 + x2 = x2 + x1), as a

consequence of its definition. Moreover, we can only add vectors

of the same number of elements (which is called the dimension of

the vector). Although it is not critical to our use of Linear Algebra,

vectors over different fields also should not be added. We will not see

the latter restriction because our vectors are all members of Rn. Even

if we come across vectors over other fields, we will not be impacted

because we have the hierarchy integers (Z) ¦ rationals (Q) ¦ real (R)

¦ complex (C) numbers. In case we happen to add a vector over the

field of integers to another one over complex numbers, we will get

a sum vector over the field of complex numbers; we may not realize

that we are committing a Linear Algebra felony.
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Fig. 2.2 Adding two vectors x1,x2 ∈ R2. We add the element of x2 to the correspond­

ing elements of x1, which we can think of as moving x2 (in blue) to the tip of x1 (in red),

so that we get the arrow drawn with dashed blue line. The sum of the two vectors is in green,

drawn from the origin to the tip of the dashed arrow.

Figure 2.2 shows the addition of two vectors x1,x2 ∈ R2. We can

think of the addition operation as transporting x2 (in blue) to the tip

of x1 (in red), so that we get the arrow drawn with dashed blue line,

parallel to the original x2, and with the same size. The sum of the

two vectors is in green, drawn from the origin to the tip of the dashed

arrow. We could, of course, x1 (the red vector) to the tip of x2 (blue)

and perform the addition that way as well. In other words, we could

complete the parallelogram with x1 and x2 as adjacent sides, and

think of the diagonal (from the origin) as the sum4.

Now that we have defined addition and scaling, we can ask the

question whether each vector has an additive inverse. In other words,

for each vector x ∈ Rn, can we find another vector x′ such that

x + x′ = 0. Note that 0 is not the number 0, but a vector 0 ∈ Rn.

We can see that if we scale x by −1 so that x′ = −1 × x, by our

definition of the addition of vectors, we have x+x′ = 0. Therefore,

every vector in Rn has an additive inverse.

4In Linear Algebra as taught in this book, our vectors are always drawn from the origin, as
a general rule. This description of the addition of vectors is the only exception to the rule,
when we think of a vector transported to the tip of another one.
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2.2.3 Linear Combinations

Once we have scalar multiplication and addition, we can perform

them both on our vectors, and be sure that what we get are valid

vectors because of the closure property of the set of vectors under the

two operations. If we have two vectors in Rn, x1 and x2, and any two

scalars, s1, s2 ∈ R, we can construct a new vector y = s1x1 + s2x2.

We know that y ∈ Rn is a valid vector.

For example, if we look at the two vectors in Figure 2.2, taking

s1 = 2 and s2 = −1, we can get

y = s1x1 + s2x2 = 2

[

1
2

]

+ (−1)

[

3
1

]

=

[

2
4

]

+

[

−3
−1

]

=

[

−1
3

]

By taking different values for s1 and s2, we can get all sorts of y

vectors. This notion of linear combinations of vectors is foundational

to Linear Algebra, and we will have much more to say about it later

on.
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Fig. 2.3 Given any green vector y and the two vectors x1 and x2, how to find the scaling

factors s1 and s2 in y = s1x1+s2x2? This geometric construction shows that any vector

can be written as a linear combination of x1 and x2.

Is it possible to have two sets of s1 and s2 for the same y? The

answer is no, and we can probably already see why. Suppose we

want to find the scaling factors for the green vector in Figure 2.3 so

that it can be written as s1x1 + s2x2. Here is one way to think about

it: Draw a line through the tip of the green vector, parallel to the blue
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vector x2. Let it intersect the line of the red vector, giving us the light

red vector x′

1
. The (signed) length of this vector x′

1
divided by the

length of x1 will be s1. The sign is positive if x1 and x′

1
are in the

same direction, and negative otherwise. By a similar construction,

we can get s2 as well. From the definition of the addition of two

vectors (as the diagonal from 0 of the parallelogram of which the two

vectors are sides), we can see that y = s1x1 + s2x2, as shown in

Figure 2.3. Since two lines (that are not parallel to each other) can

intersect only in one point (in R2), the lengths and the scaling factors

are unique.

The second question is whether we can get the zero vector

y = 0 =

[

0
0

]

= s1x1 + s2x2

without having s1 = s2 = 0 (when x1 and x2 are what we will

call linearly independent in a minute). The answer is again no,

as a corollary to the geometric “proof” for the uniqueness of the

scaling factors. But we will formally learn the real reasons (à la

Linear Algebra) in a later chapter dedicated to vector spaces and the

associated goodness.

2.3 Linear Independence of Vectors

In Figure 2.3, we saw that we can get any general vector y as a linear

combination of x1 and x2. In other words, we can always find s1 and

s2 such that y = s1x1 + s2x2. Later on, we will say that x1 and x2

span R2, which is another way of saying that all vectors in R2 can be

written as a unique linear combination of x1 and x2.

The fact thatx1 andx2 spanR2 brings us to another pivotal concept

in Linear Algebra: Linear Independence, which we will get back to,

in much more detail in Chapter 6. x1 and x2 are indeed two linearly

independent vectors in R2.

A set of vectors are linearly independent of each other if none

of them can be expressed as a linear combination of the rest. For

R2 and two vectors x1 and x2, it means x1 is not a scalar multiple

of x2. Another equivalent statement is that x1 and x2 are linearly

independent if the only s1 and s2 we can find such that 0 = s1x1 +
s2x2 is s1 = 0 and s2 = 0.
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Fig. 2.4 Two linearly dependent vectors x1 and x2, which cannot form a linear combi­

nation such that the green y = s1x1 + s2x2.

Figure 2.3 shows two x1 and x2 that are linearly independent.

In Figure 2.4, we have another pair, x1 and x2, that are linearly

dependent. When we try to construct y = s1x1 + s2x2 out of it, we

fail, unless y happens to be in the same line as x1 and x2. Even in

that case, we do not get a unique pair of s1 and s2, but an infinite

number of them.

Note that in Figure 2.4, x2 = 2x1, or 2x1 − x2 = 0: The zero

vector can be written as a linear combination of x1 and x2. Thus,

our test for linear independence fails for these two vectors, indicating

that they are, indeed, linearly dependent.

2.3.1 Vector Dot Product

Given some scalars or vectors, now we know how to multiply a vector

by a scalar and add two vectors. The operations between two scalars

are not interesting, and a scalar cannot add to a (nontrivial) vector.

So we are left with only one operation left to define, multiplication

of a vector by another vector. Let’s define a dot product between two

vectors.

Dot Product

Definition: For any two vector x1 and x2, the dot product (x1 · x2)



28 Vectors, Matrices and Their Operations

is defined as follows:

∀x1 =











x11

x21
...

xn1











and x2 =











x12

x22
...

xn2











∈ Rn,

x1 · x2

def
= x11x12 + x21x22 + · · ·+ xn1xn2

=
n

∑

1

xi1xi2 ∈ R

(2.4)

In other words, we compute the dot product between two vectors

by multiplying their corresponding elements and summing up the

products. Clearly, if the numbers of elements are different for the

two vectors, the dot product is not defined. We cannot multiply

vectors of different dimensions.

The dot product of two vectors is also known as their scalar product

because the result of the operation is a scalar. This is not to be

confused with scalar multiplication, which is about scaling a vector

using a scalar. Another commonly used name for the dot product is

inner product.

Norm of a Vector

Definition: For a vector x, its norm, ∥x∥, is defined as follows:

∀x =











x1

x2
...

xn











∈ Rn, ∥x∥ def
=

√

x2
1 + x2

2 + · · ·+ x2
n

=

√

√

√

√

n
∑

1

x2
i ∈ R

(2.5)

By the definition of the dot product, we can see that ∥x∥ =
√
x · x.

Related to the dot product, the norm of a vector is a measure of its size.

Also note that if we scale a vector by a factor s, the norm also scales

by the same factor: ∥sx∥ = s∥x∥. If we divide a vector by its norm

(which means we perform scalar multiplication by the reciprocal of

the norm), the resulting vector has unit length, or is normalized. We
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Cosine Similarity

In text analytics, in what they call Vector­Space Model, documents are represented as
vectors. We would take the terms in all documents and call each a direction in some
space. A document then would be a vector having components equal to the frequency
of each term. Before creating such term­frequency vectors, we may want to clean up
the documents by normalizing different forms of words (by stemming or lemmatization)
removing common words like articles (the, a, etc.) and prepositions (in, on, etc.), which
are considered stop words. We may also want to remove or assign lower weight to words
that are common to all documents, using the so­called inverse document frequency (IDF)
instead of raw term frequency (TF). If we treat the chapters in this book as documents,
words like linear, vector, matrix, etc. may be of little distinguishing value. Consequently,
they should get lower weights.

Once such document vectors are created (either using TF or TF­IDF), one common
task is to quantify similarity, for instance, for plagiarism detection or document retrieval
(searching). How would we do it? We could use the norm of the difference vector, but
given that the documents are likely to be of different length, and document length is not
a metric by which we want to quantify similarity, we may need another measure. The
cosine of the angle between the document vectors is a good metric, and it is called the
Cosine Similarity, computed exactly as we described in this section.

cos θ =

m∑

i=1

xi1xi2

∥x1∥∥x2∥

How accurate would the cosine similarity measure be? It turns out that it would
be very good. If, for instance, we compare one chapter against another one in this
book as opposed to one from another book on Linear Algebra, the former is likely to
have a higher cosine similarity. Why? Because we tend to use slightly flowery (albeit
totally appropriate) language because we believe it makes for a nuanced treatment of
the intricacies of this elegant branch of mathematics. How many other Linear Algebra
textbooks are likely to contain words like albeit, flowery, nuance, intricacy etc.?

use the notation x̂ to indicate unit vectors.

x̂ =
x

∥x∥
The norm we defined above is the Euclidean Norm. Other norms

are possible, defined as below for various values of p:

∥x∥p def
= p

√

√

√

√

n
∑

i=1

|xi|p ∈ R (2.6)

This so­called p­norm becomes the Euclidean norm we defined above

for p = 2. For p = 1, it becomes what is known as the Manhattan

(or Taxicab) norm. As p → ∞, the p­norm becomes the maximum
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absolute value of the elements of the vector (xi), known as the infinity

norm, or simply the maximum norm.
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Fig. 2.5 Dot product between two vectors x1,x2 ∈ R2. We compute the dot product

using the elements of the vectors as well as the angle between them and show that we get

the same result.

Dot Product as Projection: The dot product can also be defined using

the angle between the two vectors. Let’s consider two vectors x1 and

x2 with an angle θ between them. Then,

x1 · x2

def
= ∥x1∥∥x2∥ cos θ

Rearranging this definition, we can see that what it is describing is

the projection of one vector in the direction of the other.

∥x2∥ cos θ =
x1 · x2

∥x1∥
=

x1

∥x1∥
· x2 = x̂1 · x2

x̂1 is the unit vector in the direction of the first vector. ∥x2∥ cos θ is the

projection of the second vector onto this direction. As a consequence,

if the angle between the two vectors θ = π
2
, the projection is zero. If

the angle is zero, the projected length is the same as the length of the

second vector.
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Quantum Computing

The backbone of Quantum Mechanics is, in fact, Linear Algebra. By the time we finish
Chapter 11 (Eigenvalue Decomposition), we will have learned everything we need to
deal with the mathematics of QM. However, we may not be able to understand the
lingo because physicists use a completely different and alien­looking notation. Let’s go
through this so­called Dirac (AKA "bra­ket") notation for two good reasons. Firstly, we
may come across it in our online searches on Linear Algebra topics. Secondly, closer
to our field, Quantum Computing is gathering momentum. And the lingo used in the
description of its technical aspects is likely to be the one from physics.

A vector in QM is a ket vector. What we usually write as x would appear as |xð in this

notation. The transpose of a vector is the bra vector, written as yT ≡ ïy|. Therefore, a

dot product x · y = xTy ≡ ïx|yð.

Now that we got started with QM, let’s go ahead and complete the physics story. The
QM vectors are typically the wave functions of the probability amplitudes. So, if we have
an electron with a wave function |ψð = ψ(x) (x being its location in a one dimensional
problem), what it is describing is the probability amplitude of finding the electron at x.
The corresponding probability is the square of the norm of this vector, which is ïψ|ψð.

There are a couple of complications here: Since |ψð is actually a function ψ(x), it
has a value at each point x, and if we are going to think of it as a vector, it is an infinite­
dimensional vector. Secondly, the values of |ψð can be (and typically are) complex
numbers. So when we take the norm, since we like the norm to be positive, we cannot
merely take the transpose, we have to take the complex­conjugate transpose (called the
Hermitian transpose, or simply conjugate transpose). Lastly, the analog of summation
of elements, when we have an infinity of them, is going to be an integral. The space in
which such wave functions live is called the Hilbert Space.

Finally, toward the end of this book, we will come across expressions like xTAx
which will look like ïψ|H|ψð. The matrix A has become an operator H corresponding
to a physical observable (in this case, the energy, ifH is the so­called Hamiltonian), and
the values we can get are, in fact, its eigenvalues, which can be thought of as the reason
why the observable can take only discrete, quantized values. That, in a nutshell, is how
we get the various allowed energy levels in a Hydrogen atom.

The two definitions of the dot product are equivalent, which is a

remarkable fact. In other words,

n
∑

1

x1ix2i = ∥x1∥∥x2∥ cos θ

It can be proven using the Law of Cosines. Figure 2.5 shows the

equivalence of the two definitions using an example of two vectors in

R2, one projecting onto the other.
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2.4 Matrices

We introduced the notion of a matrix when we explored the conditions

of linearity for functions and expressions with two variables in §1.1.4,

page 15. Now it is time to describe it more completely and formally.

Exactly like vectors, matrices are tables of numbers. In Computer

Science, the numbers we are dealing with are typically real (which

we call floating or double in various programming languages). We

will, therefore, talk about matrices over the field of real numbers, and

write A ∈ Rm×n, which says A is a matrix over the field of reals,

with m rows and n columns (rows first, always).

2.5 Matrix Operations

The first two operations on matrices that we will define are identical

to the ones for vectors.

2.5.1 Scalar Multiplication

Definition: For any matrix A and any scalar s, the result of scalar

multiplication (sA) is defined as follows:

∀ A =







a11 · · · a1n
... aij

...

am1 · · · amn






∈ Rm×n and s ∈ R,

sA
def
=







sa11 · · · sa1n
... saij

...

sam1 · · · samn






∈ Rm×n

(2.7)

In other words, when we multiply a matrix by a scalar, we multiply

each of its elements by the scalar. The resulting matrix is of the same

dimension: If A ∈ Rm×n, then sA ∈ Rm×n.
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2.5.2 Matrix Addition

Definition: For any two matrices A and B, their sum (the result of

their addition, A+B) is defined as follows:

∀ A =







a11 · · · a1n
... aij

...

am1 · · · amn






and B =







b11 · · · b1n
... bij

...

bm1 · · · bmn






∈ Rm×n

A+B
def
=







a11 + b11 · · · a1n + b1n
... aij + bij

...

am1 + bm1 · · · amn + bmn






∈ Rm×n

(2.8)

To add two matrices, we simply add the corresponding elements.

Naturally, the two matrices we are trying to add should have the same

dimensions.

As we can see, although the notations are slightly different, vectors

and matrices have the same operations, at least when it comes to scalar

multiplication and addition. Soon, we will see that the dot product,

a quintessentially vector­type operation (with the cosine of the angle

between them) is also, in fact, a matrix operation. The reason for this

connection is simple: A vector in Linear Algebra is a matrix with

just one column; it is a column matrix. Everything we specify for

matrices applies to vectors as well.

It may be worth our time to compare the first two operations that

we defined for vectors and matrices (namely, scalar multiplication

and addition) to the conditions of linearity (namely, homogeneity and

additivity, described in §1.1.3, page 15). The fact that they seem

parallel is not an accident, but points to the underlying structure of

Linear Algebra.

2.6 Properties of Scaling and Addition

We have to keep in mind that in matrix (and therefore vector) addition,

the dimensions should match: A +B is defined if and only if they

both have the same number of rows and columns. In particular, a

vector cannot add to a matrix (of more than one column). Vectors of

different lengths cannot interact with each other; they live in different

spaces. A zero vector in R3 (our 3­D space) is not the same as the

zero vector in R2 (a plane).
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When dealing with matrices (or vectors) of compatible sizes, we

can list the mathematical properties of scalar multiplication and ad­

dition. Both these operations are:

Commutativity

The order in which the matrices (or vectors) appear in the operations

does not matter.

sx = xs; sA = As

x1 + x2 = x2 + x1; A+B = B +A

Associativity

We can group and perform the operations in any order we want.

s1s2x = s1(s2x) = (s1s2)x; s1s2A = (s1s2)A = s1(s2A)

x1 + x2 + x3 = (x1 + x2) + x3 = x1 + (x2 + x3)

A+B +C = (A+B) +C = A+ (B +C)

Distributivity

Scalar multiplication distributes over matrix addition.

s(x1 + x2) = sx1 + sx2; s(A+B) = sA+ sB

(s1 + s2)x = s1x+ s2x; (s1 + s2)A = s1A+ s2A

These properties are not arbitrarily imposed, but the consequences

of the definitions of the operations of scalar multiplication and matrix

addition. In other words, they can be proven to be true starting from

the definitions.

2.7 Matrix Multiplication

We will now define and describe how matrices multiply. Two ma­

trices can be multiplied to get a new matrix, but only under certain

conditions. Matrix multiplication, in fact, forms the backbone of

much of subject matter to follow. For that reason, we will look at it

carefully, and from different perspectives.
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2.7.1 Conformance Requirement

In order to multiply one matrix with another, the number of columns

of the first has to be the same as the number of rows of the second.

The product will have the same number of rows as the first matrix,

and the same number of columns as the second one. In other words,

if A ∈ Rm×k and B ∈ Rk×n, then they can be multiplied to give

AB ∈ Rm×n.

Note that this conformance requirement is different from the one

for matrix addition, where the individual matrices and the sum are of

the same size. In contrast, for matrix multiplication, if the individual

matrices are of the same size, they cannot be multiplied, unless they

both have the same number of rows and columns (in which case, we

will call the square matrices).

Element­wise Multiplication

Definition: For conformant matrices, we define the matrix multipli­

cation as follows: The element in the ith row and the j th column of

the product is the sum of the products of the elements in ith row of

the first matrix and the j th column of them second matrix.

More formally, for any two conformant matrices A ∈ Rm×k and

B ∈ Rk×n, their product (the result of their multiplication,C = AB)

is defined as follows:

A =







a11 · · · a1k
... ail

...

am1 · · · amk






and B =







b11 · · · b1n
... blj

...

bk1 · · · bkn






,

AB = C =







c11 · · · c1n
... cij

...

cm1 · · · cmn






∈ Rm×n where

cij
def
= ai1b1j + ai2b2j + · · ·+ aikbkj =

k
∑

l=1

ailblj

(2.9)

Since the definition of is bit cumbersome, let us take a look at what it

is saying using Figure 2.6.

Note that matrix multiplication is not commutative. AB ̸= BA,

in general. In fact, for general (non­square) matrices, if they are

conformant for the multiplication AB, they cannot be conformant

for BA and the product is not even defined.



36 Vectors, Matrices and Their Operations

!;; !;< ï !;=

!<; !<< ï !<=

î î ó î

!>; !>< ï !>=

%;; %;< ï %;?

%<; %<< ï %<?

î î ó î

%=; %=< ï %=?

=

';; ';< ï ';?

'<; '<< ï '<?

î î ó î

'>; '>< ï '>?

!++ ï !+, ï !+-

î ó î ó î

!.+ ï !., ï !.-

î ó î ó î

!/+ ï !/, ï !/-

%++ ï %+, ï %+0

î ó î ó î

%.+ ï %., ï %.0

î ó î ó î

%-+ ï %-, ï %-0

=

'++ ï '+, ï '+0

î ó î ó î

'.+ ï '., ï '.0

î ó î ó î

'/+ ï '/, ï '/0

! " = $

Fig. 2.6 Illustration of matrix multiplication AB = C . In the top panel, the element

c11 (in red) of the product C is obtained by taking the elements in the first row of A

and multiplying them with the elements in the first column of B (shown in red letters and

arrows) and summing them up. c22 (blue) is the sum­product of the second row of A and

the second column of B (blue). In the bottom panel, we see a general element, cij (green)

as the sum­product of the ith row of A and the jth column of B (in green).

2.7.2 Vector Dot Product

Now that we have defined the general matrix multiplication AB =
C, with A ∈ Rm×k, B ∈ Rk×n, and C ∈ Rm×n, let’s consider a

special case when m = n = 1. Both A and B have k numbers in

them, arranged horizontally and vertically.

A =
[

a1 a2 · · · ak
]

= aT B =











b1
b2
...

bk











= b

C = [c11] = a1b1 + a2b2 + · · ·+ akbk =
k

∑

i=1

aibi = s

(2.10)

In this case, C has become a matrix of one row and one column,

which is the same as a scalar. We can, therefore, use the symbol s
to represent it. B is a column matrix with k rows, which is what

we earlier called a vector; remember, our vectors are all column

vectors. Let’s use the symbol b instead of B to stay consistent in our
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notations. Now, A is a special matrix with k elements arranged in one

row. Some people call it a row vector, but let’s call it the transpose

of a column vector, a, and denoted it by aT. We get the transpose

of a matrix switching its rows and columns. In the case of a column

matrix (a vector), which is a sequence of numbers standing vertically,

its transpose happens when we make them lie down horizontally.

What we have written down above is mathematically identical to

our definition of vector dot product in Eqn (2.4), with a = x1 and

b = x2. In other words, the vector dot product a · b is identical to

the matrix product aTb. Note that a · b = b · a and aTb = bTa, as

we can see from the summation in Equations (2.4) and (2.10). Since

this dot product is something we may need to cross­reference later

on, let’s restate it and give it a new equation number:

a · b = aTb = bTa = b · a (2.11)

As we see clearly now, the vector dot product is a special case of

matrix multiplication. In fact, all the operations we defined for vec­

tors are special cases of the corresponding operations for matrices,

which is not surprising because our vectors are merely matrices with

one column. We actually used matrix multiplication way back in

Eqn (1.1), where we called it a notational trick.

Multiplication as Dot Products

Definition: In AB = D (with A ∈ Rm×k, B ∈ Rk×n, and D ∈
Rm×n)5, A consists of m rows rT

i , each of which have k elements

and B consists of n column vectors cj with k elements each. Then

the element dij of the product is the dot product of ri and cj .

dij = ri · cj = rT

i cj

Here, we are restating the matrix multiplication using the definition

of vector dot product, rather cyclically. We think of A consisting of

m vectors ri arranged horizontally. To be more precise, A consists

of m rows rT

i , since our vectors are column vectors, as are the n
columns in the matrix B which we call cj . Because of the matrix

dimensions, all rT

i and cj have k elements each, and we are allowed

to take their dot products.

5We are using D (instead of C) as the product in order to avoid possible confusion between
the symbols for column vectors cj and the elements of the product matrix.
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2.7.3 Block­wise Matrix Multiplication

We can perform matrix multiplication in a block­wise fashion, where

we segment the matrices we are multiplying into blocks that are

conformant sub­matrices, and multiply block­by­block. While this

statement may be of dubious usefulness, we have already used it

above, in defining matrix multiplication as dot product of the rows

of the first and the columns of the second. What we did was to

divide up the matrices into smaller blocks that are conformant for

multiplication and define the product in terms of the products of the

smaller blocks.

The block­wise multiplication brings out the recursive nature of the

operation. In the product C = AB, if A is segmented into m × k
blocks Ail and B into Blj (k × n of them), we can write the block

Cij as:

Cij =
k

∑

l=1

AilBlj

provided that the block Ail is conformant for multiplication with Blj .

Compare this equation to Eqn (2.9) and we can immediately see that

the latter is a special case of partitioning A and B into blocks of

single elements.

In general, segmenting matrices into comformant blocks may not

be trivial, but we have advanced topics in Linear Algebra where it

comes in handy. For our purposes, we can think of few cases of simple

segmentation of a matrix and perform block­wise multiplication.

Special Cases of Block­wise Multiplication

Here is a situation where block­wise multiplication makes sense: If

we have A ∈ Rn×n and B ∈ Rn×2n, we can certainly multiply them

and get AB ∈ Rn×2n. We can also think of B as composed of two

matrices, B1 and B2, both of size Rn×n, arranged side­by­side. In

other words, B consists of two blocks of square matrices and can

be written as B = [B1 | B2]. The notation [C | D] stands for a

new matrix in which we have the columns of C and D side­by­side.

Later on, we will call such matrices “augmented matrices.” Now,

AB = A[B1 | B2] = [AB1 | AB2]
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which is like distributing the matrix multiplier A over the operation

of segmenting the matrix into blocks. We will use this type of block­

wise matrix multiplication in understanding some of the techniques

later. We have keep it in mind that the order in which the matrices

appear in the product is significant because matrix multiplication is

not commutative. In particular, BA ̸= [B1A | B2A]. In fact, the

B and A are not even conformant for the multiplication BA.

Another case where block­wise multiplication makes sense is when

we think of the second matrix as blocks of column vectors. In other

words, we have A ∈ Rm×n and B ∈ Rn×k and if we think of B as k
column vectors bi standing side­by­side, which we write as B = [bi].
Then we have the block­wise multiplication,

AB = A[bi] = A[b1 | b2 | · · · | bk] = [Ab1 | Ab2 | · · · | Abn]

Earlier, we spoke of Ax = b as set of m linear equations on n
unknowns. We can think of the product AB as shown in this block­

wise multiplication as a collection of k such sets. We will circle back

to this notion in Chapter 5.

2.7.4 Column and Row Pictures of Matrix Multiplication

We can think of our first matrix as composed of column vectors, and

the product as a linear combination of these vectors, which gives us

the column picture of matrix multiplication. This column picture is a

view that underpins several critical concepts in Linear Algebra, and

we will come back to it time and again in this book.

Remember, we defined the Linear Combinations of vectors in

§2.2.3 (page 25). Let’s now restate the definition of matrix multipli­

cation using the notion of the linear combinations of the columns of

the first matrix, scaled by the elements of the second matrix. To keep

it simple, let’s first consider the multiplication of a matrix A ∈ Rm×n

by a column vector x ∈ Rn. The matrices are conformant, and the

multiplication is allowed. We will get a vector as the product, which

we will call b ∈ Rm. We can think of A as being composed of n
column vectors (ci ∈ Rm) standing side­by­side. The product Ax

is then the linear combination of the columns of A, scaled by the

components of x.
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A =





| | |
c1 c2 · · · cn
| | |



 ∈ Rm×n x =











x1

x2
...

xn











∈ Rn

Ax = b = x1c1 + x2c2 + · · ·+ xncn ∈ Rm

(2.12)

Similarly, multiplication on the left gives us the row picture. Take

xT to be a matrix of single row (xT ∈ R1×m), which means x is

column vector x ∈ Rm. And A ∈ Rm×n. Now the product xTA is

a row matrix bT ∈ R1×n. The row picture says that xTA is a linear

combination of the rows of the matrix A.
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Fig. 2.7 Illustration of matrix multiplication as column and row pictures. On the left,

we have Ax, where the product (which is a column vector we might call b) is the linear

combination of the columns of A. On the right, we have xTA, where the product (say bT)

is a linear combination of the rows of A.

Since the column and row pictures are hard to grasp as concepts, we

illustrate them in Figure 2.7 using example matrices with color­coded

rows and columns. We can use the basic element­wise multiplication

(Eqn (2.9)) of matrices and satisfy ourselves that the column and row

pictures indeed give the same numeric answers as element­by­element

multiplication. To put it as a mnemonic, matrix multiplication is the

linear combination of the columns of the matrix on the left and of the

rows of the matrix on the right.
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The column and row pictures are, in fact, special cases of the block­

wise multiplication we discussed earlier. In the column picture, we

are segmenting the first matrix into blocks that are columns, which are

conformant for multiplication by single­element blocks (or scalars)

of the second matrix. The sum of the individual products is then

the linear combinations of the columns of the first matrix. We can

visualize the row picture also as a similar block­wise multiplication.

If, instead of a vector x, we had a multi­column second matrix,

then the product also would have multiple columns. Each column of

the product would then be the linear combinations of the columns of

A, scaled by the corresponding column of the second matrix. In other

words, in AB,A ∈ Rm×k,B ∈ Rk×n, the product has n columns,

each of which is a linear combination of the columns of A.

Considering this a teachable moment, let’s look at it from the

perspective of block­wise multiplication once more. Let’s think of

B as composed on of n column matrices stacked side­by­side as

B = [b1 | b2 | · · · | bn]. Then, by block­wise multiplication, we

have:

AB = A[b1 | b2 | · · · | bn] = [Ab1 | Ab2 | · · · | Abn]

which says that each column of the product is Abi, which, by the

column picture of matrix multiplication, is a linear combination of

the columns of A using the coefficients from bi.

2.7.5 Vector Inner and Outer Products

Vector dot product is commutative: a · b = b · a. This property can

be easily verified by examining its definition in Eqn (2.10). When

written using the matrix notation, commutativity means: aTb = bTa.

However, note that matrix multiplication by itself is not commutative.

In particular, aTb ̸= abT (although both multiplications are between

conformant matrices and therefore allowed). The latter is, in fact, not

a scalar, but a matrix of size k × k if a, b ∈ Rk. The matrix abT

is called the outer product (as opposed to the dot product, which is

the inner product) of the two vectors. The outer product has certain

properties that will become important to us later in the book.
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Groups, Rings and Fields

Group: A Group is a set of mathematical entities with one binary operation, the identity
of the operation and an inverse for every element with respect to that operation. The
operation needs to be commutative.

The set of all integers with addition defined will be an example. Zero is the identity,
for every number, its negative is the additive inverse.

Ring: A Ring is a set of mathematical entities with two binary operations (general­
ized versions of the arithmetic operations of addition and multiplication) with the key
properties:

• Addition is associative and commutative

• There is an additive identity, a zero

• Every element has an additive inverse

• Multiplication is associative

• Not necessary that multiplication be commutative

• Multiplication distributes over addition

• It need not have an multiplicative inverse

Classic examples of Rings are:

• Integers

• Integers modulo some Natural number greater than one

Field: A Field has (in addition to what Rings have):

• Multiplication is commutative

• Every nonzero element has a multiplicative inverse

Classic examples of Fields are:

• Rational numbers

• Real numbers

• Complex numbers

• Integers modulo a Prime number

A Field is a Ring with extra properties. And a Ring is a Group with extra properties.

2.8 Generalized Vectors

We should keep in mind that, in its generality, vectors are defined

only by their operations, namely scalar multiplication, addition, and

the inner product. Any set of mathematical entities, literally any

at all, for which we can consistently define these operations with

the right commutative, additive and associative properties can be

treated as vectors. Once we do that, the vast machinery of Linear

Algebra stands ready to help us ensure consistency, derive insights

and deepen our understanding further, which is the way it is used
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Convolution

Convolution in image processing involves sliding a small matrix (kernel) over an image.
At each position, the kernel’s values are multiplied with the underlying image pixels, and
the results are summed to form a new pixel value in the output image. This operation is
used for tasks like blurring, edge detection, and feature extraction.

Here’s how convolution works in the context of image processing:

• Input Image: A two­dimensional matrix representing an image’s pixel values.

• Kernel/Filter: A smaller matrix with numerical values defining the convolution
operation.

• Sliding: The kernel is systematically moved over the image in small steps.

• Element­Wise Multiplication: Values in the kernel and underlying pixels are
multiplied.

• Summation: The products are added up at each kernel position.

• Output: The sums are placed in the output matrix, which is also known as the
feature map or convolved image.

Convolution is used for various image processing tasks:

• Blurring/Smoothing: By using a kernel with equal values, convolution can
smooth an image, reducing noise and sharp transitions.

• Edge Detection: Specific kernels can detect edges in an image by highlighting
areas with rapid intensity changes.

• Feature Extraction: Convolution with various filters can extract specific fea­
tures from images, such as texture or pattern information.

• Sharpening: Convolution with a sharpening filter enhances edges and details in
an image.

It is left as an exercise to the student to look up how exactly the convolution is performed,
and whether it is linear.

in modern physics, most notably in quantum mechanics and special

relativity.
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3
Transposes and

Determinants

I would rather have questions that can’t be answered than

answers that can’t be questioned.

—Richard Feynman

Now that we have defined matrices and mastered the basic oper­

ations on them, let’s look at another operation that comes up very

often in Linear Algebra, namely taking the transpose of a matrix. We

will also introduce the concept of the determinant of a matrix, which

a single number with a lot of information about the matrix, and with

a nice geometrical interpretation. Also in this chapter, we will go

over the nomenclature of various special matrices and entities related

to matrices with a view to familiarizing ourselves with the lingo of

Linear Algebra. This familiarity will come in handy in later chapters.

3.1 Transpose of a Matrix

We get the transpose of a matrix by flipping it over its main diagonal.

Before defining it more formally, let’s first look at an example in
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Eqn (3.1), where the so­called main diagonal is highlighted in bold.

The transpose of a matrix is obtained, basically, by switching the

rows and columns.

A =





7 1 1 4
8 8 0 7
6 9 2 8



 ∈ R3×4 AT =









7 8 6
1 8 9
1 0 2
4 7 8









∈ R4×3 (3.1)

The main diagonal is the elements whose row number is the same

as the column number: aii. Flipping a matrix over it means we take

the element aij and put in the location of aji.
To make future definitions easier to write, let’s first introduce a

shorthand notation for a matrix A ∈ Rm×n as
[

aij
]

, where we expect

ourselves to understand, from the context, that we mean aij to stand

for a typical element in A, with the row index i, 1 f i f m and

the column index j, 1 f j f n. With this notation, we can state the

definition of the transpose of a matrix as follows:

Matrix Transpose

Definition: For any matrix A =
[

aij
]

∈ Rm×n, its transpose is

defined as AT def
=

[

aji
]

∈ Rn×m.

3.1.1 Properties of Transposes

From the definitions of transposes and the basic operations of matri­

ces, we can prove the following properties.

1. Transpose of a Transpose: If we take the transpose twice, we

get the original matrix back.
(

AT
)T

= A

2. Transpose of a Sum: The transpose of the sum of two matrices

is the sum of the transposes of the individual matrices.

(A+B)T = AT +BT

3. Scalar Multiplication: The operation of taking the transpose

of a matrix commutes with scalar multiplication.

(sA)T = sAT
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4. Transpose of a Scalar: Scalars can be considered a matrix of

one row and one column. Therefore, it is its own transpose.

s ≡ [s] =⇒ sT = [s]T = [s] = s

3.1.2 Product Rule

The transpose of the product of two matrices is the product of the

transposes, taken in the reverse order.

(AB)T = BTAT

This product rule also can be proven by looking at the (i, j) element

of the product matrices on the left and right hand sides, although it is

a bit tedious to do so. Before proving the product rule, let’s look at

the dimensions of the matrices involved in the product rule and easily

see why the rule makes sense.

Let’s consider A ∈ Rm×k and B ∈ Rk×n so that AB ∈ Rm×n.

The dimensions have to be this way by the conformance requirement

of matrix multiplication, which says that the number of columns of

the first matrix has to be the same as the number of rows of the

second one. Otherwise, we cannot define the product. In particular,

for m ̸= n, BA is not defined.

By the definition of transpose, we have

A ∈ Rm×k =⇒ AT ∈ Rk×m and B ∈ Rk×n =⇒ BT ∈ Rn×k

Note that the number of columns ofBT is the same as number of rows

of AT. Therefore, the product BTAT is well defined, while ATBT

cannot be defined (unless m = n). Furthermore, BTAT ∈ Rn×m.

And, from the definition of the transpose of a matrix again, we

know that

AB ∈ Rm×n =⇒ (AB)T ∈ Rn×m

which is the same as the dimensions of product of the transposes

in the reverse order: BTAT ∈ Rn×m. Therefore, at least from the

perspective of conformance of matrix multiplication, the product rule

of transposes makes sense.



Transpose of a Matrix 47

Let’s illustrate this product rule of transposes using an example

with two simple matrices A and B:

A =

[

1 2 3
4 5 6

]

and B =





3 4
5 6
7 8





AB =

[

34 40
79 94

]

=⇒ (AB)T =

[

34 79
40 94

]

BT =

[

3 5 7
4 6 8

]

and AT =





1 4
2 5
3 6





BTAT =

[

34 79
40 94

]

= (AB)T

We have postponed the proof for the product rule of transposes for

as long as possible. Now, we will present two proofs.

Proof 1: Here, we will use the element­wise multiplication of matrices

to prove the product rule. In C = AB, where A ∈ Rm×k and

B ∈ Rk×n, let’s denote AT = A′ =
[

a′ij
]

, BT = B′ =
[

b′ij
]

and

CT = C′ =
[

c′ij
]

.

(1) Element­wise matrix multiplication: cij =

k
∑

p=1

aipbpj

(2) Definition of transpose: c′ij = cji

(3) Using (2), and i´ j: =

k
∑

p=1

ajpbpi

(4) Definition of transpose: =

k
∑

p=1

a′pjb
′

ip

(5) Rearranging: c′ij =

k
∑

p=1

b′ipa
′

pj

(6) Recognizing (5) as matrix product: CT
= BTAT

Proof 2: Here, we will use the dot­product view of matrix multiplica­
tion to prove the product rule. In C = AB, let’s denote CT = C′.
Noting that the element cij of C is the dot product of ith row of A
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and j th column of B, we can write:

(1) The element cij as dot product: cij = ai · bj

(2) Definition of transpose: c′ij = cji

(3) Using (1), and switching i´ j: cji = aj · bi

(4) Since dot product is commutative: cji = bi · aj

(5) Using (2) and the definition of transposes: c′ij = bi · aj = b′i · a
′

j

(6) Writing (5) in matrix form: C′
= CT

= BTAT

In (5), we used the fact that the ith row of a matrix is the same as

the ith column of its transpose. In both proofs, we have shown that

CT = (AB)T = BTAT.

3.2 Definitions and Matrices with Special Properties

Main Diagonal: The line of elements in a matrix with the same row

and column indexes is known as the main diagonal. It may be

referred to as the leading diagonal as well. In other words, it

is the line formed by the elements aii in A =
[

aij
]

∈ Rm×n.

Note that number of rows and columns the matrix A does not

have to be equal.

Square Matrix: When the number of rows in a matrix is the same as

the number of columns, we call it a square matrix. IfA ∈ Rn×n

then A is a square matrix.

Here is an interesting fact: For any matrix A ∈ Rm×n, AAT ∈
Rm×m and ATA ∈ Rn×n. Therefore, for any matrix (of any

size), its product with its transpose (multiplying on the right or

left) is always a square matrix.

Symmetric Matrix: A matrix is symmetric when its transpose is

identical to itself. AT = A =⇒ A is symmetric. This condi­

tion cannot be satisfied by a non­square matrix, and therefore

all symmetric matrices are square matrices. For a symmetric

matrix, aij = aji.

For a square matrix A ∈ Rn×n, A+AT is always a symmetric

matrix, which is easily proved by the fact that the transpose of

the sum of two matrices is the sum of their transposes.
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Skew­Symmetric Matrix: A matrix is skew symmetric (AKA anti­

symmetric) when its transpose is the negative of itself. AT =
−A =⇒ A is skew symmetric. Like in the previous case,

this condition also cannot be met by a non­square matrix, and

therefore all skew­symmetric matrices are also square matrices.

For a skew­symmetric matrix, aij = −aji.

For a square matrix A ∈ Rn×n, A − AT is always a skew­

symmetric matrix, which can be proven using the same tech­

nique as for A+AT being symmetric.

Gram Matrix: Another interesting fact: For any matrix A ∈ Rm×n,

what is
(

ATA
)T

? By the product rule of matrix transposes,

(

ATA
)T

= AT
(

AT
)T

= ATA

In other words, ATA is symmetric. So is AAT, by the same

argument. ATA is called the Gram Matrix.

Diagonal Matrix: A matrix that has zero elements everywhere other

than the main diagonal elements is called a diagonal matrix.

It is usually a square matrix, but we can call a non­square

matrix also a diagonal matrix without ambiguity because we

have a clear definition for the main diagonal. Using symbols,

A =
[

aij
]

∈ Rm×n is a diagonal matrix if aij = 0 for all i ̸= j.

Note that we do not specify the values of the diagonal elements

in anyway: They may or may not be zero. In particular, a zero

matrix (with all zero elements) is also a diagonal matrix.

Identity Matrix: The identity matrix is a square, diagonal matrix

with ones along the diagonal and zeros everywhere else. A = I

if and only if A ∈ Rn×n, aii = 1 and aij = 0 for i ̸= j. We

use the symbol I or In to refer to the identity matrix.

Unit Vectors We can think of the columns of the identity matrix as

unit vectors defining directions in space. For I3 ∈ R3×3, the

unit vectors (̂i, ĵ and k̂, as some people, especially physicists,

denote them) would be:

I =





1 0 0
0 1 0
0 0 1



 î =





1
0
0



 ĵ =





0
1
0



 k̂ =





0
0
1




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Now, we can write any general vector, say,

x =





x
y
z



 as x = xî+ yĵ + zk̂

Note that the unit vectors, as defined here, all have unit length.

They are also perpendicular to each other because the dot prod­

uct of any distinct pair of them is zero.

Upper and Lower Triangular Matrices: An upper triangular ma­

trix (U =
[

uij

]

∈ Rm×n) is the one with all the elements

below the main diagonal zero.

uij = 0 for i > j

Similarly, a lower triangular matrix (L =
[

lij
]

∈ Rm×n) is the

one with all the elements above the main diagonal zero.

lij = 0 for i < j

Here are some examples:

L =

[

a 0
c d

]

∈ R2×2 U =

[

a b
0 d

]

∈ R2×2

Again, note that we do not specify anything about nonzero

elements in the definitions. They can be zeros as well, and

a diagonal matrix, in principle, is both an upper and a lower

triangular matrix at the same time.

Inverse of a Matrix: A (square) matrix (A), when multiplied by its

inverse (A−1) will result in the identity matrix (I): A−1A =
AA−1 = I . For non­square matrices, we can have left and

right inverses, but they will be different from each other.

Singular Matrix: Not all square matrices have inverses. If a matrix

is noninvertible, it is called singular.

3.3 Determinant of a Matrix

The determinant of a square matrix is a scalar value derived out

of its elements. It contains a large amount of information about
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Morphisms

Earlier (in §1.1.5, page 16), we talked about how a matrix A ∈ Rm×n as encoding a
linear transformations between Rn and Rm. A : Rn 7→ Rm. Other names for a linear
transformation include linear map, linear mapping, homomorphism etc. If n = m, then
A maps Rn to itself: Every vector (x) in Rn, when multiplied by A, gives us another
vector b ∈ Rn. The name used for it is a linear endomorphism. Note that two different
vectors x1,x2 do not necessarily have to give us two different vectors. If they do, then
the transformation is called an automorphism. Such a transformation can be inverted:
We can find another transformation that will reverse the operation.

To complete the story of morphisms, a transformation Rn 7→ Rm (with n and m not
necessarily equal) is called an isomorphism if it can be reversed, which means that it is
a one­to­one and onto mapping, also known as bijective. If two vectors in Rn (x1 and
x2) map to the same vector in Rm (b), then given b, we have no way of knowing which
vector (x1 or x2) it came from, and we cannot invert the operation.

Of course, these morphisms are more general: They are not necessarily between the
so­called Euclidean spaces Rn, but between any mathematical structure. We, for our
purposes in computer science, are interested only in Rn though.

Let’s illustrate the use of the idea of isomorphisms with an (admittedly academic)
example. We know that the number of points in a line segment between 0 and 1 is
infinite. So is the number of points in a square of side 1. Are these two infinities the
same?

If we can find an isomorphism from the square (in R2) to the line (R), then we can
argue that they are. Here is such an isomorphism: For any point in the square, take its
coordinates, 0 < x, y < 1. Express them as decimal numbers. Create a new number x′

by taking the first digit of x, then the first digit of y, followed by the second digit of x,
second digit of y and so on, thereby interleaving the coordinates into a new number. As
we can see, 0 < x

′
< 1, and this transformation T is a one­to­one mapping and onto,

or an isomorphism: T : (x, y) 7→ x
′ : R2 7→ R. It is always possible to reverse the

operation and find x and y given any x
′, T−1 : x′ 7→ (x, y) : R 7→ R2. Therefore the

infinities have to be equal.

Another transformation that is definitely not an isomorphism is the projection op­
eration: Take any point (x, y) and project it to the x axis, so that the new x

′ = x.
P : (x, y) 7→ x : R2 7→ R maps multiple points to the same number, and it cannot be

reversed. P−1 does not exist.

Interestingly, P is a linear transformation, while T is not.

the matrix and the linear transformation (see §1.1.5, page 16) that

it represents. We use the symbol det(A),∆A or |A| to denote the

determinant of the square matrix A.

Before actually defining the determinant, let’s formally state what

we said in the previous paragraph.

|A| = f(aij) where A =
[

aij
]

∈ Rn×n
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which says that the determinant is a function (a hitherto unknown one)

of the elements of the square matrix. We will soon specify what the

function is. Before defining it, however, let us list some interesting

facts about the determinant.

Thinking of A ∈ Rn×n as a linear transformation, we can say that

|A| = 0 means that it is not a one­to­one mapping or an isomor­

phism. In other words, A takes multiple vectors in Rn to the same

transformed vector (again in Rn). See the box titled “Morphisms”

for the formal nomenclature and some more details.

If the determinant is not zero, then A represents an isomorphism,

and we can invert its transformation. We can find another matrix to do

the reversal, and we will call it the inverse ofA, and denote it using the

symbolA−1, which is indeed the same inverse we defined on page 50.

The transformations that are not isomorphisms cannot be reversed,

and the corresponding matrices are noninvertible; they are singular

matrices. To use the right mathematical lingo, the determinant |A|
being nonzero is a necessary and sufficient condition for the matrix

A to be invertible.

As we shall see later, when the matrix A is invertible, the system

of linear equations Ax = b has a unique solution. We can think of

this characteristic of the determinant an algebraic property because it

says something about the solutions of linear equations. In addition,

we will find a geometric property as well, stating that the determinant

behaves like the volume of a parallelepiped that the matrix represents,

which we will explore once we define what the determinant is. Par­

allelepiped, by the way, is the higher­dimensional generalization of a

parallelogram, which is a diamond­shaped, sheared rectangle in 2­D.

3.3.1 2 × 2 Matrices

If we have a matrixA ∈ R2×2 as in the equation below, its determinant

is defined as |A| = ad− bc. To restate it formally,

A =

[

a c
b d

]

∈ R2×2 |A| =

∣

∣

∣

∣

a c
b d

∣

∣

∣

∣

def
= ad− bc ∈ R (3.2)

We can think of A as having two column vectors (c1 and c2) standing

side­by­side.

A =

[

a c
b d

]

∈ R2×2 c1 =

[

a
b

]

, c2 =

[

c
d

]

,∈ R2
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Fig. 3.1 The matrix A transforms the unit vectors to its columns, a1 and a2, thus

transforming the unit square to a parallelogram.

How does A transform the unit vectors? (The ith unit vector is the ith

column of the identity matrix I). The transformed versions are just

c1 and c2, the columns of A.

A

[

1

0

]

=

[

a c

b d

] [

1

0

]

=

[

a

b

]

= c1 A

[

0

1

]

=

[

a c

b d

] [

0

1

]

=

[

c

d

]

= c2

It is easiest to use the column picture of matrix multiplication (§2.7.4,

page 39) to understand this fact: The first product above is a trivial

linear combination of the columns ofA, taking one of the first column

and zero of the second column (1× c1 + 0× c2), giving us the first

column c1 of A back. Similarly the second unit vector transforms to

the second column c2 of A.

As we can see in Figures 3.1 and 3.2, the transformation thatA per­

forms on the unit square with vertices at (0, 0), (1, 0), (1, 1) and (0, 1)
takes it to a parallelogram with vertices at (0, 0), (a, b), (a+ c, b+ d)
and (c, d). And the area of this parallelogram, as Figure 3.2 proves

without words1, is indeed the determinant as defined in Eqn (3.2).

In Rn, instead of the area, we get the (signed) volume of hyper­

parallelepiped. Note that we have proved only the absolute value of

1The proof is recreated from Mathematics StackExchange, attributed to Solomon W. Golomb.
If the geometrical version of the proof is hard to digest, there is an algebraic version as well.

https://math.stackexchange.com/a/115545
https://math.stackexchange.com/a/619212
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(0,0) (L, 0)

(0, M)
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(L, O + M) (L + N, O + M)
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-

.

(L, O)
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Fig. 3.2 The parallelogram that results from the transformation of the unit square by the

action of A. The picture proves, without words, that its area is the same as |A|.

the area in Figure 3.2; we will learn more about the sign part in the

following examples.

In Figure 3.3, we have three different examples of A in R2 and

their determinants. In the left panel, we see how A transforms the

red and blue unit vectors (which have unit elements in the first and

second dimension respectively). The red unit vector gets transformed

to the first column of A (shown in a lighter shade of red), and the

blue one to the second column (light blue vector). If we complete the

parallelogram, its area is 2, which is the determinant, |A|.
In the middle panel of Figure 3.3, we have a different A, which

does something strange to the red and blue unit vectors: They get

transformed to a line, which is a collapsed parallelogram with zero

area. And by the definition of |A|, it is indeed zero. Looking at the

column vectors in A, we can see that they are scalar multiples of each

other; they are not linearly independent.

In the right panel of the same figure, we have shuffled the columns

of A, so that parallelogram is the same as in the left panel, but the

determinant now is negative. We, therefore, call the determinant the

signed area of the parallelogram formed with the column vectors as

adjacent sides. Why is the area negative in this case? It is because A

has flipped the order of the transformed vectors: Our blue unit vector

is to the left of the red one. In the left panel, the transformed blue
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Fig. 3.3 Determinants as areas: The matrix A transforms the unit square (shaded grey)

into the amber parallelogram. The determinant |A| is the signed area of this parallelogram.

The sign is negative when the transformed unit vectors “flip.”

vector is still to the left. But in the right panel, the blue one has gone

to the right of the red one after transformation, thereby attributing a

negative sign to the determinant.

To use a more formal language, to go from the first (red) unit vector

to the second (blue) one, we go in the counterclockwise direction.

The direction is the same for the transformed versions in the left panel

of Figure 3.3, in which case the determinant is positive. So is the

area. In the right panel, the direction for the transformed vectors is

clockwise, opposite of the unit vectors. In this case, the determinant

and the signed area are negative.

3.3.2 3 × 3 Matrices

We have defined the determinant of a 2× 2 matrix in Eqn (3.2). We

now extend it to higher dimensions recursively. For A =
[

aij
]

∈
R3×3, we have:

A =





a11 a12 a13
a21 a22 a23
a31 a32 a33



 ∈ R3×3

|A|
def
= a11

∣

∣

∣

∣

a22 a23
a32 a33

∣

∣

∣

∣

− a12

∣

∣

∣

∣

a21 a23
a31 a33

∣

∣

∣

∣

+ a13

∣

∣

∣

∣

a21 a22
a31 a32

∣

∣

∣

∣

∈ R

(3.3)

Since each of the 2 × 2 determinants in Eqn (3.3) are defined in

Eqn (3.2), we have a recursive formula for the determinant of A ∈
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R3×3. Notice that the first term has a positive sign, the second one

a negative sign and the third a positive sign again. This pattern of

alternating signs extends to higher dimensions as well.

Minors and Cofactors: The first submatrix whose determinant ap­

pears in Eqn (3.3) (multiplying a11) is obtained by removing the first

row and column from A. Generalizing, the one multiplying aij is the

determinant of the submatrix obtained by removing the ith row and

the j th column. The determinants of such submatrices are called the

minors of A, denoted by Mij .

The minor with the associated sign is called the cofactor, Cij =
−1i+jMij . What we did in Eqn (3.3) was to expand the determinant

along the first row. We could have done it along the first column as

well. In fact, we can compute the determinant by expanding along any

row or column and summing up the cofactors. With these definitions

of minors and cofactors, we rewrite Eqn (3.3) more compactly as

follows (where we are expanding |A| along the ith row):

|A| =
3

∑

j=1

(−1)i+jaijMij =
3

∑

j=1

aijCij (3.4)

Determinant as Volume: For 2× 2 matrices, we saw that the deter­

minant was the (signed) area of the parallelogram to which the unit

square transformed. In the 3× 3 case, it becomes the volume of the

parallelepiped that is the transformed version of the unit cube. It is

also signed: If two unit vectors flip orientation when transformed,

the determinant gets multiplied by−1, which means if one more unit

vector flips, the sign reverts back to the original.

3.3.3 n × n Matrices

We can extend the notion of volume to Rn. If we think of A as being

composed of n column vectors,

A =





| | |
c1 c2 · · · cn
| | |



 ∈ Rn×n ci ∈ Rn

the determinant, |A|, is the signed volume of the n­dimensional par­

allelepiped formed with edges ci.
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Fig. 3.4 Illustration of minors and cofactors using an example 4×4 matrix. The minor is

the determinant of the submatrix obtained by removing the row and column corresponding

to each element, as shown. Notice the sign in the summation. The minor with the associated

sign is the cofactor.

Laplace Formula: What we wrote down in Eqn (3.4) is, in fact, the

general version of the recursive formula for computing the determi­

nant, expanding over the ith row.

|A| =
n

∑

j=1

(−1)i+jaijMij =
n

∑

j=1

aijCij (3.5)

This is the Laplace formula (or expansion). We could do the expan­

sion over the j th column as well.

|A| =
n

∑

i=1

(−1)i+jaijMij =
n

∑

i=1

aijCij

In fact, one of the properties of determinants is that they are invariant

under row­column transposition, which is to say, when taking the

transpose of the matrix. In other words |A| =
∣

∣AT
∣

∣.

3.3.4 Properties of Determinants

We went over some of the characteristics and properties of determi­

nants. Let’s list them all here for completeness.

1. Identity matrices (of any dimension, I ∈ Rn×n) have a deter­

minant of one.

|I| = 1

This property is consistent with the fact that a hypercube of

unit sides has unit (hyper)volume.
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2. If we exchange two rows (or two columns) the determinant

changes sign. (As a consequence, it should be impossible to

get back to the same matrix by performing an odd number of

row or column exchanges.)

3. If we multiply a row (or a column) by a scalar s, the determinant

gets multiplied by the same factor:

A =

[

a c
b d

]

A1 =

[

sa sc
b d

]

A2 =

[

sa c
sb d

]

=⇒ |A1| = |A2| = s |A|

Since determinants behave like volumes, we can see that if we

double one side of a hypercube or a parallelepiped, its volume

gets doubled. If we double all sides, then its volume gets

multiplied by 2n.

4. If we can express all elements in one row (or a column) as sums

of two numbers each, we can split the whole determinant as

sum of two determinants.
∣

∣

∣

∣

a+ a′ c+ c′

b d

∣

∣

∣

∣

=

∣

∣

∣

∣

a c
b d

∣

∣

∣

∣

+

∣

∣

∣

∣

a′ c′

b d

∣

∣

∣

∣

5. If one row (or columns) is all zeros, then the determinant is

zero. This statement should be self­evident from the definition

of determinants (Eqn (3.5)): We expand the Laplace formula

over the row or column with all zeros to get |A| = 0.

6. The determinant does not change if we add or subtract any mul­

tiple of one row (or column) from any other row (or column).

While this property may sound a bit mysterious, it corresponds

to the fact that the matrix equations (such as Ax = b) actu­

ally encode systems of linear equations, which we can add and

subtract without affecting their solvability or solutions.

7. If two rows (or columns) of the matrix are the same, the de­

terminant is zero, which is a corollary of the previous two

properties.

8. For a triangular matrix (e.g., upper triangular matrix, U : uij =
0 for i > j), the determinant is the product of the diagonal
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Deriving |A|
It is possible to start from the properties (listed in §3.3.4, page 57) and derive the formula
for the determinant for a 2× 2 matrix, which is an interesting exercise.

• Start with the identity matrix in R2. By Property (1), we have:

∣

∣

∣

∣

1 0

0 1

∣

∣

∣

∣

= 1

• Property (3): Scale the first row by a, the determinant scales by a:

∣

∣

∣

∣

a 0

0 1

∣

∣

∣

∣

= a

• Using the same property again, this time to scale the second row by d,
∣

∣

∣

∣

a 0

0 d

∣

∣

∣

∣

= ad (3.6)

• Similarly, by multiplying the rows of I by b and c, we get:

∣

∣

∣

∣

b 0

0 c

∣

∣

∣

∣

= bc

• Property (2): Swap the rows, the determinant changes sign, which means:
∣

∣

∣

∣

0 c

b 0

∣

∣

∣

∣

= −

∣

∣

∣

∣

b 0

0 c

∣

∣

∣

∣

= −bc (3.7)

• Property (4): Express the elements of the first row as sums, we can write:
∣

∣

∣

∣

a c

b d

∣

∣

∣

∣

=

∣

∣

∣

∣

a+ 0 0 + c

b d

∣

∣

∣

∣

=

∣

∣

∣

∣

a 0

b d

∣

∣

∣

∣

+

∣

∣

∣

∣

0 c

b d

∣

∣

∣

∣

(3.8)

• We can express the first term in Eqn (3.8), again by using Property (4) as:
∣

∣

∣

∣

a 0

b d

∣

∣

∣

∣

=

∣

∣

∣

∣

a 0

0 + b d+ 0

∣

∣

∣

∣

=

∣

∣

∣

∣

a 0

0 d

∣

∣

∣

∣

+

∣

∣

∣

∣

a 0

b 0

∣

∣

∣

∣

=

∣

∣

∣

∣

a 0

0 d

∣

∣

∣

∣

The second determinant is zero by Property (5) because it contains a column of zeros.

• Similarly, the second term becomes:

∣

∣

∣

∣

0 c

b d

∣

∣

∣

∣

=

∣

∣

∣

∣

0 c

b 0

∣

∣

∣

∣

• Therefore we get, using Equations (3.6) and (3.7) in Eqn (3.8),
∣

∣

∣

∣

a c

b d

∣

∣

∣

∣

=

∣

∣

∣

∣

a 0

0 d

∣

∣

∣

∣

+

∣

∣

∣

∣

0 c

b 0

∣

∣

∣

∣

= ad− bc

What this derivation is telling us is that the properties of the determinant are not merely
a consequence of its definition, but also its origin. In other words, if we are looking for
a number associated with a matrix with the specified set of properties, the determinant
turns out to be that number.

elements. We can appreciate the veracity of this property by

expanding the determinant over the first column for an upper

triangular matrix, or the first row of a lower triangular matrix.

9. If the determinant is zero, the matrix cannot be inverted. We

have not defined or discussed matrix inversion, but the inverse

of a matrix is something that reverses its transformation. If
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Ax = b, and x = A−1b, we call A−1 the inverse of A. What

this property says is that if |A| = 0, we cannot find A−1. As

we saw earlier, such noninvertible matrices are called singular

matrices, and have deep implications in much of what we will

learn form now on.

10. The determinant of the product of two matrices (of the same

size) is the product of their determinants: |AB| = |A| |B|.

11. The determinant of the transpose of a matrix is the same as that

of the matrix. We could have used this last property to avoid

specifying “or column” in most of the properties above.

3.4 Numerical Computations

This first part of the book (comprising Chapters 1, 2 and 3) was meant

to be about numerical computations involving vectors and matrices.

The moment we start speaking of vectors, however, we are already

thinking in geometrical terms. In this chapter, we also saw how

determinants had a geometric meaning as well.

In the first chapter, in order to provide a motivation for the idea

of matrices, we introduced linear equations, which is what we will

expand on, in the next part on the algebraic view of Linear Algebra.

We will go deeper into systems of linear equations. While discussing

the properties of determinants, we hinted at their connection with

linear equations again.

As we can see, although we might want to keep the algebra and

geometry separated, it may not be possible (nor is it perhaps advis­

able) to do so because we are dealing with different views of the same

subject of Linear Algebra.
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4
Gaussian Elimination

Confidence is what you have before you understand the

problem.

—Woody Allen

If we have a system of linear equations, we may or may not have

solutions, we may have a unique solution or an infinite number of

solutions. As we will see very soon, it is not easy to determine the

solvability of a system even for relatively small number of equations.

We can, of course, perform a series of manipulations on the equations

(like adding them, eliminating variables, substituting the solved ones

back etc.) to arrive at their solutions. How do we get a computer to

solve the system of equations though? We need an algorithm, both to

determine the solvability conditions and to actually find the solutions.

Such an algorithm is called Gaussian elimination or row reduction.

4.1 Solvability of System of Linear Equations

Let’s start with a simple system of two linear equations, and see what

the problem really is. Here, we will have only two variables, x and
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Table 4.1 Various permutations of simultaneous equations in two variables, showing

solvability

Equations Solution Comment

1
x+ y = 5

x− y = 1

x = 3

y = 2
Unique solution

2 x+ y = 5
x = t

y = 5− t

Infinity of solutions

Only one equation

3
x+ y = 5

2x+ 2y = 10

x = t

y = 5− t

Infinity of solutions

Really, only one equation

4
x+ y = 5

x+ y = 1
–

No solutions

Inconsistent equations

5

x+ y = 5

x− y = 1

3x− y = 7

x = 3

y = 2

Unique solution

Really only two equations

6

x+ y = 5

x− y = 1

3x− y = 9

–
No solutions

Inconsistent equations

y. We are told that if we have two equations and two unknowns, we

can solve them, as though the equality of the number of variables to

the number of equations is the necessary and sufficient condition for

solvability. However, as Table 4.1 shows, it is only part of the story,

and not always true.

In the first row of the table, we see the ideal case: We have two

good equations for our two unknowns and we can easily find their

solutions.

In the second row, we have too few equations. What happens is

not that we do not have a solution. Any x and y satisfying the one

equation we have is a solution, and we have infinitely many of them.

In the third row of Table 4.1, we do have two equations, but

the second equation is derived from the first, and is therefore not

independent. In effect, we have only one equation and an infinite

number of solutions, as in the second row.
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In the fourth row, we have two equations, but they are not consistent

with each other. They both cannot be true at the same time for any

pair of values of x and y.

Things get complicated in the fifth row, where we seem to have

three equations. But the third one can be derived from the first two. It

is, in fact, Eq.1 + 2×Eq.2, which means, in reality, we only have two

good equations for two unknowns. We therefore get a good solution,

much like the first row of Table 4.1.

The sixth row looks similar to the fifth, but the third equation there

is different on the right hand side. It cannot be derived from the other

two, and is inconsistent with them. Therefore, we have no solutions.

In light of these results, we can state the solvability condition, in

a general case as follows: If we have a system of n independent

and consistent linear equations on n unknowns, we can find a unique

solution for them. We are yet to define the concepts of independence

and consistency though.

Independence

Definition: An equation in a system of linear equations is considered

independent if it cannot be derived from the rest using algebraic

manipulations.

If we multiply an equation with a scalar, or add two equations, the

new equation we get is not independent. Again, notice the similarity

of the dependence of equations with our requirements for linearity

(§1.1.3, page 15).

Consistency

Definition: An inconsistent system of linear equations is the one with

no solutions.

The concept of consistency is harder to pin down. For now, we are

defining it rather cyclically as in the statement above. It is possible,

however, to visualize why some equations are inconsistent with oth­

ers. In fourth row of Table 4.1, for instance, the lines described by

the two equations are parallel to each other.

4.1.1 Visualizing Equations

In Table 4.1, our equations represent line because we have only two

variables (x and y) and we are dealing with R2, which is a plane.
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Fig. 4.1 Visualizing equations listed in Table 4.1. Clockwise from top­left: Row 1, 4, 5

and 6 in the table.

In Figure 4.1, we can see the lines corresponding to the equations

in the various rows in the table. For the first row, we have two

good (independent and consistent) equations, corresponding to the

red and blue lines in the top­left panel. This system has nice solution,

where the two lines intersect, at x = 3, y = 2. When people say “as

many equations as unknowns,” what they have in mind is this type of

independent and consistent system.

In the second row of Table 4.1, we have only one equation, which

corresponds to the red one in all panels of Figure 4.1. Every point on

the line is a solution to the equation, which goes for the third row too.

The fourth row of the table is shown in the top­right panel of

Figure 4.1 as two parallel lines, which will never meet. No point in

the red line will ever be a point in the blue line, and the equations do

not have a solution, which is why they are inconsistent.
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In the fifth row of Table 4.1, we have an extra third equation,

shown as a green line in the bottom­left panel of Figure 4.1. It is

consistent with the other two equations because it goes through the

same solution point x = 3, y = 2. The equations are, in fact, not

independent, any one of them can be derived from the other two. The

three equations are consistent with each other and any two of them

would be enough to fully solve the system.

The sixth row shows the case where the third equation is not

consistent. Note that in this case, we do not have parallel lines,

but three lines not having a common point (which would have been

the solution). For future use, it may be interesting to wonder what an

approximate, or best possible, solution would be. Is the centroid of

the triangle formed by the three lines, perhaps, a good candidate as

the best possible solution?

4.1.2 Generalizing to Rn

The representation of the one­dimensional space R, as we learn in

school, is the number line. An equation, such as x = 1 or, in general,

ax = b defines a point on this line.

When we move to R2, the same equation, x = 1 defines a vertical

line. In general, however, we have an equation, a1x+a2y = b, which

defines a line with a slope. If we have two such equations, then we

get two lines, with the possibility of them intersecting and giving us

a solution to the system of the two equations.

Similarly, in R3, a single linear equation, such as x = 1 defines

a plane. It is a plane parallel to the yz plane, at unit distance from

it. x = 0 would be the yz plane. A general equation of the form

a1x+a2y+a3z = b gives us a plane with some orientation. Another

linear equation defines another plane. If the equations are consistent

and independent, the planes will intersect, giving us the solution,

which is a line. Since the solution is a line, we have an infinity of

solutions with two linear equations in R3. If we have one more linear

equation, we have another plane, potentially intersecting this solution

line at a point, giving us a unique solution.

With this picture in mind, let’s list the behavior of systems of linear

equations and their solutions in R2, R3 and extrapolate to Rn, as in

Table 4.2.

Summarizing the insights from Table 4.2,
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Table 4.2 Properties and behavior of linear equations and solutions

Equations R2 R3 Rn : n > 3

One equation
A line

Infinite solutions

A plane

Infinite solutions

An n− 1 subspace

Infinite solutions

Two independent and

consistent equations

A point of intersection

Unique solution

A line of intersection

Infinite solutions

An n− 2 subspace as

intersection. ∞ solutions

Three independent and

consistent equations
Cannot happen

A point of intersection

Unique solution

An n− 3 subspace as

intersection. ∞ solutions

n independent and

consistent equations
Cannot happen Cannot happen

A point of intersection.

Unique solution

Two independent, but

inconsistent equations

Parallel lines

No intersection

No solutions

Parallel planes

No intersection

No solutions

Parallel subspaces

No intersection

No solutions

Three independent, but

inconsistent equations

Lines that make

|||, ∦,△1

No solutions

Planes making |||, ∦,△

in cross section2

No solutions

Hard to visualize

No common intersection

No solutions

n independent, but

inconsistent equations

Lines that make

|||, ∦,△3

No solutions

Planes making |||, ∦,△

in cross section4

No solutions

Hard to visualize

No common intersection

No solutions

1,3 These symbols represent three parallel lines, two parallel lines plus an intersecting line, or three lines making

a triangle.
2,4 These symbols represent three planes, which, when sliced perpendicularly by a plane, show up as three

parallel lines, two parallel lines plus an intersecting line, or three lines making a triangle. In other words, the

three planes are parallel, two parallel with one intersecting or the three making a triangular tube respectively.

• The number of independent equations in a system of consistent

linear equations can never be greater than the number of unknowns.

• If a system of linear equations has more independent equations

than unknowns, it is necessarily inconsistent and has no solutions.

As we can see, the behavior of systems of equations is much more

complicated than what we learned in highschool. Furthermore, it

looks hard to generalize to higher dimensions, and harder still to

understand, how a given system is going to behave. Imagine if we

have 50 unknowns and 100 equations–a relatively small system that

we may come across in our computer/data science career. Do they

have solutions? Are the equations independent? Consistent? Are

there too many? Or too few? We clearly need a systematic way, an

algorithm, to tell us these things.

4.2 Gaussian Elimination

The critical step in the process to determine the solvability and to

actually solve systems of linear equations is Gaussian Elimination,
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also known as Row Reduction. Gaussian elimination is the algorithm

to transform a matrix by applying a series of elementary row opera­

tions to arrive at its Row­Echelon Form (REF). When working with

systems of linear equations and their solutions, we apply Gaussian

elimination on the augmented matrix of the system. (We will soon

define the terms in italics.) Gaussian elimination, however, has appli­

cations other than solving equations, such as computing determinants,

finding inverses, determining ranks of matrices, and so on.

4.2.1 Matrix as System of Linear Equations

The first step in applying Gaussian elimination is to cast our linear

equations in a compact matrix form. We, in fact, did this in Chapter

1 (§1.1.4, page 15), when we introduced vectors and matrices. Let’s

do it again, looking at the deceptively simple equation, Ax = b, that

will become the mainstay of our discussion for the rest of the book.

Writing it out explicitly:

A =







a11 · · · a1n
... aij

...

am1 · · · amn






∈ Rm×n and x =











x1

x2
...

xn











∈ Rn,

Ax = b, where b =











b1
b2
...

bm











∈ Rm

(4.1)

Now that we know matrix multiplication, we can see that Ax = b

represents a system of m linear equations of the kind

ai1x1 + ai2x2 + · · ·+ ainxn = bi where 1 f i f m

on n unknowns, xj, 1 f j f n.

On these equations, we can perform algebraic operations, like

adding or subtracting them, multiplying by a scalar, etc. In fact,

we can perform operations similar to taking linear combinations,

described in §2.2.3 (page 25). Notice the similarity between these

algebraic manipulations of equations and some of the properties of

determinants (§3.3.4, page 57)? We will make use of this similarity

in using Gaussian elimination for determinant calculation.
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4.2.2 Elementary Row Operations

Analogous to the algebraic manipulation of equations, let’s first define

a set of elementary row operations, as listed below:

• Swap any two rows.

• Multiply any row by a scalar.

• Add a multiple of any row to another.

We will use these row operations to build an algorithm to solve the

system of linear equations Ax = b, much the same way we would

use the corresponding algebraic operations to solve the equations

symbolically. The advantage in the matrix formulation is that we are

dealing with numbers, and we can program a computer to perform

the operations once the algorithm is ready.

4.2.3 Augmented Matrix

We have to keep in mind that what we are doing when performing

row operation on A is basically the same as algebraic manipulation

of equations. Therefore, we have to apply the same operation to the

right hand side, b as well. For this reason, it may be best to add an

extra column to A with the elements of b. Such a matrix is called the

augmented matrix. It is merely a convenient bookkeeping technique,

which turns out to be useful when implementing row operations in a

computer program.

[

A | b
]

=











a11 · · · a1n b1
a21 · · · a2n b2

... aij
... bi

am1 · · · amn bm











(4.2)

Now that we are naming matrices, let’s also call A (either as part of
[

A | b
]

or by itself) the coefficient matrix, and the b part the constant

matrix or constant vector.

Before describing the algorithm of Gaussian elimination, let’s look

at the endpoint of the algorithm, which is the form in which we would

like to have our matrix A or
[

A | b
]

.



70 Gaussian Elimination

Row­Echelon form

Definition: A matrix is considered to be in its row­echelon form

(REF) if it satisfies the following two conditions:

1. All rows with zero elements are at the bottom of the matrix.

2. The first nonzero element in any row is strictly to the right of

the first nonzero element in the row above it.

Pivots

Definition: The leading nonzero element in a row of a matrix in its

row­echelon form is called a pivot. The corresponding column is

called the pivot column. Pivots are also called the leading coefficient.

The largest number of pivots a matrix can have is the smaller of

its dimensions (numbers of rows and columns). In other words, for

A ∈ Rm×n, the largest number of pivots would be min(m,n).

Rank

Definition: The number of pivots of a matrix (in its REF) is its rank.

We will have a better definition of rank later on. If a matrix has its

largest possible rank (which is the largest possible number of pivots,

min(m,n)) is called a full­rank matrix. If a matrix is not full rank, we

call it rank deficient, and its rank deficiency is min(m,n)− rank(A).
We have a few examples of matrices in their REF in Eqn (4.3)

below, where the pivots are shown in bold. The first matrix shows a

square matrix of size 4 × 4, and it has four pivots, and is therefore

full rank. The second matrix is 2× 3, and has two pivots–the largest

possible number. It is also full­rank. The third one is a 4× 4 matrix,

but has only three pivots. It is rank deficient by one. The fourth

matrix also has a rank deficiency of one.






5 2 11 3
0 3 7 13
0 0 17 2
0 0 0 13







[

5 11 3
0 0 13

]







5 2 11 3
0 0 17 2
0 0 0 13

0 0 0 0











5 2 11 3
0 0 17 2
0 0 0 0



 (4.3)

4.2.4 The Algorithm

With the definitions of REF, pivots and ranks in place, we can state

the Gaussian elimination algorithm, running on a matrixA =
[

aij
]

∈
Rm×n as follows:
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Gaussian Elimination: Algorithm

Since this is a book aimed at computer and data scientists, it is probably worth our time
stating the algorithm of Gaussian Elimination as an algorithm.

Input: A =
[

aij

]

∈ Rm×n

Output: RRF(A) ∈ Rm×n

1: REF← A; nrows← m

2: while m > 0 and n > 0 do
If the first row does not start with a nonzero element,
try to find a row that does:

3: if a11 = 0 then
4: repeat
5: if a11 = 0 then
6: for i = 1 to m do
7: if ai1 ̸= 0 then

Swap row 1 with row i:
8: r1 ´ ri
9: Exit repeat loop

10: end if
11: end for

Could not find a row with nonzero element in the first column
12: A← A

[

a22 : amn

]

,m← m− 1, n← n− 1
13: end if
14: until a11 ̸= 0
15: else

Subtract scaled first row from other rows to get zero first column
16: for i = 2 to m do
17: ri ← ri −

ai1

a11
r1

18: end for
19: end if

Save the current row in the REF
20: REF(nrows−m)← A

[

a11 : a1n

]

21: A← A
[

a22 : amn

]

,m← m− 1, n← n− 1
22: end while
23: return REF

Note that instead of finding the first row with nonzero element (starting at line 5),
it may be a better numerical strategy to unconditionally locate the row with the largest
absolute value at the first element (starting at line 3), and swapping it with the first row.
Most programs implement Gaussian Elimination that way.

1. If a11 = 0, loop over the rows of A to find the row that has a

nonzero element in the first column.

2. If found, swap it with the first row. If not, ignore the first row

and column and move on to the second row (calling it the first).

3. Multiply the first row with − ai1
a11

and add it to the ith row to get

zeros in the first column of all rows other than the first one.
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4. Now consider the submatrix from the second row, second col­

umn to the last row, last element (i.e., from a22 to amn) as the

new matrix:

A← A[a22 : amn],m← m− 1, n← n− 1

5. Loop back to step 1 and perform all the steps until all rows or

columns are exhausted.

Note that in step 3, we are subtracting a number after dividing it by

a11, which may cause numerical instability in the algorithm when

a11 → 0. For this reason, we may want to modify the first step to

find the row with the largest absolute value in the first column. (In

other words, modify the first step to read, “Loop over the rows of A

to find the row that has the largest absolute value (̸= 0) in the first

column,” which is the way Gaussian elimination is implemented in

most programs, including SageMath.)

4.3 Applications of Gaussian Elimination

Although the primary objective of Gaussian elimination is to solve

systems of linear equations, we also use it for a couple of other

purposes.

We saw that the rank of a matrix is the same as the number of

pivots, which we can get directly from Gaussian elimination (AKA

row reduction, as a reminder).

At the end of Gaussian elimination, we have an upper triangular

matrix. If we start with a square matrix, whose determinant we need

to compute, we can get it (or its absolute value) by simply taking the

product of the diagonal elements (which are the pivots) because the

elementary row operations we perform in Gaussian elimination do

not change the absolute value of the determinant.

For these applications, we can also perform Gaussian elimination

by column (as column reduction) instead of row. However, for the

main application of solving a system of linear equations, we can do

it only row­wise. Besides, column­wise Gaussian elimination is the

same as row reduction on the transpose of the matrix anyway.
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Fig. 4.2 Gaussian elimination on a simple augmented matrix, showing the pivots.

4.3.1 Solution to System of Linear Equations

To solve a system of linear equations, we apply the algorithm of

Gaussian elimination to its augmented matrix. Let’s first look at

a simple example from the first row in Table 4.1. As shown in

Figure 4.2, the system of linear equations, x + y = 5, x − y = 1,

translates to an augmented matrix
[

A | b
]

with two rows, and single

step Gaussian elimination, after which, we get two pivots, 1 and −2.

Although it is a simple system, we can make a few observations about

it:

• The rank of the 2×2 matrix A is two, and it is full­rank matrix.

• Since the coefficient matrix (A) is square and full rank, we can

infer that the system has a unique solution.

• The determinant, |A| is the product of the pivots = −2. It

can also be calculated directly: |A| = a11a22 − a21a12 =
(1×−1)− (1× 1) = −2.

• The last row of the REF form of
[

A | b
]

stands for the equation

−2y = −4, which gives us y = 2.

• We can back­substitute this value of y in the second last row

(which is the first row) to solve for the other variable, giving us

x+ 2 = 5 =⇒ x = 3.

Back Substitution

Definition: The process of solving a system of linear equations from

the REF of the augmented matrix of the system is known as back

substitution. The equation corresponding to the last nonzero row is
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Table 4.3 Illustration of solvability conditions based on the characteristics of REF

Equations
[

A | b
]

REF(
[

A | b
]

) Observations1

1
x + y = 5

x− y = 1

[

1 1 5
1 −1 1

] [

1 1 5
0 −2 −4

]

REF has no 0 = bi =⇒ Solvable

Rank = # Vars =⇒ Unique Solution

2 x + y = 5
[

1 1 5
] [

1 1 5
] REF has no 0 = bi =⇒ Solvable

Rank < # Vars =⇒ Infinity of Solns

3
x + y = 5

2x + 2y = 10

[

1 1 5
2 2 10

] [

1 1 5
0 0 0

]

REF has no 0 = bi =⇒ Solvable

Rank < # Vars =⇒ Infinity of Solns

4
x + y = 5

x + y = 6

[

1 1 5
1 1 6

] [

1 1 5
0 0 1

]

REF has 0 = bi =⇒ Inconsistency

Not Solvable

5

x + y = 5

x− y = 1

3x− y = 7





1 1 5
1 −1 1
3 −1 7









1 1 5
0 −2 −4
0 0 0





REF has no 0 = bi =⇒ Solvable

Rank = # Vars =⇒ Unique Solution

6

x + y = 5

x− y = 1

3x− y = 9





1 1 5
1 −1 1
3 −1 9









1 1 5
0 −2 −4
0 0 2





REF has 0 = bi =⇒ Inconsistency

Not Solvable

1 Note: When we say 0 = bi in the observations, we mean with bi ̸= 0.

solved first, and the solution is substituted in the one for the row

above and so on, until all the variables are solved.

With Gaussian elimination and back substitution, we can solve

a system of linear equations is as fully as possible. Moreover, we

can say a lot about the solvability of the system by looking at the

pivots, as we shall illustrate using the examples in Table 4.1. We

have the augmented matrices for these equations, their REF, and our

observations on solvability of the system based on the properties

of the REF in Table 4.3. These observations are, in fact, general

statements about the solvability of systems of linear equations, as

listed below.

Solvability Conditions of a system of linear equations based on the

properties of the REF of its augmented matrix:

1. If we have a row in the REF (of the augmented matrix
[

A | b
]

)

with all zeros in the coefficient (A) part and a nonzero element

in the constant (b) part, the system is not solvable.

2. If the number of pivots in the REF is the same as the number

of unknowns, we have a unique solution, provided the system

is solvable by the first condition.
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3. If the number of pivots is smaller than the number of vari­

ables, we have an infinity of solutions, providing the system is

solvable (by the first condition).

The first solvability condition above can be stated in a variety of ways:

• If a certain linear combination of the rows of the coefficient

matrix gives all zeros, the same combination of the elements of

the constant vector also should give zero. Else, the system is

inconsistent and not solvable.

• If the rank of the augmented matrix is greater than the rank

of the coefficient matrix, the system is inconsistent and not

solvable.

• If the pivot in any row of the REF of the augmented matrix is

in the augmented column (meaning, in the constants column,

coming from b), the system is not solvable.

Knowing that the number of pivots in the REF is the same as the

rank of the matrix, we can restate the solvability conditions more

formally (albeit absolutely equivalently and therefore superfluously)

as follows: For a system of linear equationsAx = bwithm equations

and n unknowns (in other words, A ∈ Rm×n), with rank(A) = r and

rank(
[

A | b
]

) = r′, we have:

1. If r′ > r, the system is inconsistent and unsolvable.

2. If n = r = r′, the system has a unique solution.

3. If n > r, the system has an infinity of solutions.

Notes:

• The largest value the rank of any matrix can have is the smaller

of its dimensions.

• The rank r of the coefficient matrix A ∈ Rm×n can never be

larger than the rank r′ of
[

A | b
]

∈ Rm×(n+1).

• As a corollary, if n > m, we have too few equations. The

system, if solvable, will always have infinitely many solutions.

We will look at some more examples to illustrate the solvability

conditions when we discuss the elementary matrices (the matrices
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associated with the elementary operations) after the next important

topic on finding the complete solution of a system of linear equations

when we have an infinite number of solutions.

4.3.2 Complete Solution

Looking at the solvability of the systems of equations in Table 4.3,

we see that in several of them, we have either a unique solution or

no solutions at all. In the case of no solution, we give up right

away. When we have a unique solution, we can get at it using back

substitution. What is more complicated is when we have infinitely

many solutions as in rows 2 and 3 in Table 4.1, but the solution was

still trivial to find because it was just a line representing one of the

equations in the system.

Here is a system of equations with nontrivial infinity of solutions,

along with its augmented matrix and its REF.

x+ y + z = 6

2x+ 2y + z = 9

x+ y = 3

=⇒
[

A | b
]

=





1 1 1 6
2 2 1 9
1 1 0 3





REF
−−→





1 1 1 6
0 0 −1 −3
0 0 0 0





From the REF above, we can start back substituting: Row 3 does

not say anything. Row 2 says:

−z = −3 =⇒ z = 3

Substituting it in the row above, we get:

x+ y + 3 = 6 or x+ y = 3

By convention, we take the variable corresponding to the non­pivot

column (which is column 2 in this case, corresponding to the variable

y) as a free variable. It can take any value y = t. Once y takes a

value, x is fixed: x = 3− t. So the complete solution to this system

of equations is:

x =





x
y
z



 =





3− t
t
3



 =





3
0
3



+ t





−1
1
0





Note that a linear equation (such as z = 3) in R3 defines a plane.

x + y = 3 also defines a plane. (The pair x = 3 − t and y = t is
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a parametric equation to the same plane.) The intersection of these

two planes is a line. And any point in this line is a solution to our set

of linear equations.

Let’s take one more example, this time with four variablesx1, x2, x3

and x4:

x1 + x2 + x3 + 2x4 = 6

2x1 + 2x2 + x3 + 7x4 = 9

[

A | b
]

=

[

1 1 1 2 6
2 2 1 7 9

]

REF
−−→

[

1 1 1 2 6
0 0 −1 3 −3

]

Columns 1 and 3 have pivots, which means x2 and x4 are free vari­

ables. Assigning values t1 and t2 to them, the last row gives us the

equation: −x3 + 3t2 = −3 or x3 = 3 + 3t2. The first row stands for

the equation:

x1 + x2 + x3 + 2x4 = 6

Now we know x2 = t1, x3 = 3 + 3t2 and x4 = t2. Substituting, we

get:

x1 + t1 + 3 + 3t2 + 2t2 = 6

This equation gives us the parametrized value of x1 = 3 − t1 − 5t2
and the complete solution:

x =









x1

x2

x3

x4









=









3− t1 − 5t2
t1

3 + 3t2
t2









=









3
0
3
0









+ t1









−1
1
0
0









+ t2









−5
0
3
1









(4.4)

We have chosen to decompose the complete solution in this way (as

the sum of one vector and a linear combination of two others) because

it is the right form for a later topic. Just as a preview, we will call the

first vector a particular solution and the linear combination the null

space later on.

General Solution The complete solution in Eqn (4.4) is also called

the general solution. Let’s take a closer look at it. It has the form

xp + t1xs1 + t2xs2 . The first vector, xp is the so­called particular

solution. We can get it by setting all the free variables (the ones

corresponding to the non­pivot columns, which are the second and

fourth variables in our example above) to the value zero. The second

and third terms in the solution form a linear combination of two
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vectors xs1 and xs2 . These vectors are called the special solutions

of the system. We can see that they are, in fact, the solutions to the

equations when the right hand side, the constants part, is zero, which

is to say b = 0.

When a system of linear equations is of the form Ax = 0, it is

called a homogeneous system because all the terms in the system are

of the same order one in the variables (as opposed to some with order

zero if we had a nonzero b). Therefore, the special solutions are also

called homogeneous solutions.

Lastly, the linear combinations of the special solutions in our ex­

ample, t1xs1+t2xs2 , define a plane inR4, as two linearly independent

vectors always form a plane going through the origin 0. What the ad­

dition of xp does is to shift the plane to its tip, namely the coordinate

point (3, 0, 3, 0), if we allow ourselves to visualize it in a coordinate

space. In other words, the complete solution is any vector whose

tip is on this plane defined by the special solutions xs1 and xs2 , and

shifted by the particular solution xp.

4.3.3 Elementary Matrices

Each of the row operations that we perform on a matrixA in Gaussian

elimination can be thought of as a matrix multiplying A on the left.

This insight comes from the row picture of matrix multiplication

(§2.7.4, page 39). For easy reference, here are the elementary row

operations once more:

1. Swap any two rows.

e.g., Swap the second and third rows (r3 ´ r2).

2. Multiply any row by a scalar.

e.g., Multiply the second row by 3 (r2 ← 3r2).

3. Add a multiple of any row to another.

e.g., Subtract three times the first row from the third (r3 ←
−3r1 + r3).
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For any A ∈ R3×n, here are the so­called elementary matrices (or

operators) that would implement the examples listed above:

E1 =





1 0 0
0 0 1
0 1 0



 E2 =





1 0 0
0 3 0
0 0 1



 E3 =





1 0 0
0 1 0
−3 0 1





By the row picture of matrix multiplication, U = E1A can be stated

as follows, denoting the rows of A by ri and the rows of U by r′i:

• r′1 is a linear combination of the rows of A:

r′1 = 1r1 + 0r2 + 0r3 = r1

• r′2 is another linear combination: r′2 = 0r1 + 0r2 + 1r3 = r3

• r′3 is another linear combination: r′3 = 0r1 + 1r2 + 0r3 = r2

As we can see, E1 implements the swap of the second and third rows

of any A ∈ R3×n. In particular, it does it for the identity matrix I in

R3×3. Therefore, we can see that the elementary matrices differ from

the identity matrix of the same size by one elementary row operation.

Summarizing, we can capture each elementary row operation that

we apply to a matrix in Gaussian elimination as a matrix multiplying it

on the left. This matrix is called the elementary matrix or elementary

operator, denoted by E. Since we are reducing a matrix A to its

REF, it is customary to think of its rows being replaced by linear

combinations other rows: In other words, we usually write ri ←
(rather than r′i =) a specified linear combination, as we see in our

examples.

Figure 4.3 shows the elementary matrix (in blue) that reduced

our augmented matrix
[

A | b
]

for the system of linear equations,

x + y = 5, x − y = 1 to REF. We needed only one elementary

operation in this example. We have more examples of elementary

matrices in Tables 4.6 to 4.10.

4.3.4 LU Decomposition

As we have seen, the Row­Echelon Form (REF), the end result of

Gaussian elimination, is always an upper triangular matrix. We hinted

at this by calling it U in one of our equations. Since Gaussian

elimination can be applied to any matrix, we can always get an upper

triangular matrix from any matrix by applying the elementary row
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Fig. 4.3 Gaussian elimination on a simple augmented matrix, showing the elementary

operator that implements the row reduction.

operations listed earlier (in §4.2.2, page 69). Table 4.4 shows an

example of this process of getting a U out of a matrix by finding its

REF.

We have more examples coming up (in Tables 4.4 to 4.10), where

we will write down the elementary matrix that implemented each row

operation. We will call these elementary matrices Ei. Referring to

Table 4.4, we can therefore write the REF form as:

U = E2E1A = EA

Table 4.4 A = LU Decomposition

[A]→ REF Row Op. Ei Inv. Op. E
−1

i





1 1 1
2 1 1
1 3 0





r2 ← −2r1 + r2

r3 ← −r1 + r3





1 0 0
−2 1 0
−1 0 1





r2 ← 2r1 + r2

r3 ← r1 + r3





1 0 0
2 1 0
1 0 1









1 1 1
0 −1 −1
0 2 −1



 r3 ←2r2 + r3





1 0 0
0 1 0
0 2 1



 r3 ← −2r2 + r3





1 0 0
0 1 0
0 −2 1









1 1 1
0 −1 −1
0 0 −3



 L = E
−1

1
E

−1

2
=





1 0 0
2 1 0
1 −2 1



 U = REF =





1 1 1
0 −1 −1
0 0 −3





Let’s focus on one elementary row operation, E2 (second row, under the column Ei). This operation replaces

row 3 with the sum of twice row 2 and row 3. The inverse of this operation would be to replace the row 3 with

row 3 − twice row 2, as shown in the column Inv. Op. The elementary operation for this inverse operation is,

in fact, the inverse of E2, which we can find in the last column, under E
−1

i
.
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Note the order in which the elementary matrices appear in the product.

We perform the first row operation E1 on A, get the product E1A

and apply the second operation E2 on this product, and so on.

We have not yet fully discussed the inverse of matrices, but the

idea of the inverse undoing what the original matrix does is probably

clear enough at this point. Now, starting from the upper triangular

matrix U that is the REF of A, we can write the following:

U = EA = E2E1A =⇒ A = E−1

1
E−1

2
U = LU

where we have called the matrixE−1

1
E−1

2
, which is a lower triangular

matrix (because each of the E−1

i is a lower triangular matrix) L.

Again notice the order in which the inversesEi appear in the equation:

We undo the last operation first before moving on to the previous one.

This statement is the famous LU decomposition, which states

that any matrix can be written as the product of a lower triangular

matrix L and an upper triangular matrix U . The algorithm we use

to perform the decomposition is Gaussian elimination. Notice that

all the elementary matrices and their inverses have unit determinants,

and the row operations we carry out do not change the determinant

of A, such that |A| = |U |.

Permutation Matrices: In discussing the example in Table 4.4, we

cleverly glossed over one fact: We did not use the first elementary

row operation (namely, swapping rows). Row exchanges introduce

symmetric matrices as their elementary matrices. They are not lower

triangular. The matrix implementing row exchanges is called a per­

mutation matrix, and is denoted by P .

Every permutation matrix (of single row exchange) differs from

the identity matrix of the same size by one or more row exchange5.

And it is its own inverse (because exchanging row with another is

undone by the same exchange): P 2 = I . To introduce another name,

the matrices that are their own inverses are called involutory. And

the permutation matrices implementing a single row exchange are

involutory.

Here are all possible permutation matrices that swap one or more

pairs of rows in R2 and R3:

5In principle, we can have permutation matrices that perform multiple row exchanges, but
for the purposes of this book, we focus on one row exchange at a time.
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Table 4.5 A = PLU Decomposition

[A]→ REF Row Op. Ei Inv. Op. E
−1

i





1 1 1
2 2 1
1 3 0



 r2 ´ r3





1 0 0
0 0 1
0 1 0



 r2 ´ r3





1 0 0
0 0 1
0 1 0









1 1 1
1 3 0
2 2 1





r2 ← −r1 + r2

r3 ← −2r1 + r3





1 0 0
−1 1 0
−2 0 1





r2 ← r1 + r2

r3 ← 2r1 + r3





1 0 0
1 1 0
2 0 1









1 1 1
0 2 −1
0 0 −1



 P =





1 0 0
0 0 1
0 1 0



 L = E
−1

2
=





1 0 0
1 1 0
2 0 1



 U = REF =





1 1 1
0 2 −1
0 0 −1





r1 ´ r2
r1 ´ r2 r1 ´ r2 r2 ´ r3 r3 ´ r1 r2 ´ r3
[

0 1
1 0

]





0 1 0
1 0 0
0 0 1









1 0 0
0 0 1
0 1 0









0 0 1
0 1 0
1 0 0









0 1 0
0 0 1
1 0 0





Note that the last one does multiple row exchanges and conse­

quently P 2 ̸= I: It is not involutory.

4.3.5 PLU Decomposition

Since the elementary operation of row exchanges breaks our decom­

position of A = LU , we keep the permutation part separate, and

come up with the general, unbreakable, universally applicable decom­

position A = PLU . We can see an example of this decomposition

in Table 4.5.

4.3.6 Computing Determinants

As breifly mentioned earlier, we can use Gaussian elimination to

compute the determinant of a square matrix. Once we get the REF

(U ), the determinant is simply the product of diagonal elements. The

reason is that the elementary row operations do not change the abso­

lute value of the determinant. Or rather, they change the determinant

in a way we can keep track of.

• Swapping two rows will result in the determinant flipping sign

(Property 1 in §3.3.4, page 57). We therefore have to keep track

of how many times we swapped rows when applying Gaussian

elimination to compute determinants.
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• Although we defined it as an elementary row operation (for

future use), we do not scale rows in Gaussian elimination. If

we did, we would have to keep track of it as well because

the determinant then would be multiplied by the same scaling

factor (Property 3 in §3.3.4, page 57)

• The third elementary operation (adding/subtracting a multiple

of a row from another one) does not change the determinant

(by Property 6 in §3.3.4, page 57).

Why would we want to compute determinants this way rather than

using the Laplace expansion (Eqn (3.4))? The computational com­

plexity of the Laplace expansion isO(n!) while that of the Gaussian­

elimination way is only O(n3), which is a huge gain for large values

of n. As a special case, if the matrix does not have a full set of

pivots, the determinant is zero, which means we do not even have

to complete Gaussian elimination; we can stop the moment we get a

row without a pivot.

4.4 More Examples

In Table 4.6, we have the first example of a system of three equations:

We have as many equations as unknowns. After Gaussian elimination,

we can see that we have a full set of pivots, and A is indeed full rank.

Therefore, we get a unique solution through back substitution, as

shown after the table.

We can restate the determinant computation more formally in terms

of the PLU decomposition we discussed above. If we start with a

square matrix A ∈ Rn×n, we can make the following statements:

1. By the product rule of determinants (Property 10 in §3.3.4, page

57, |AB| = |A| |B|), we can see that |A| = |P | |L| |U |.

2. |P | = ±1. (Exercise: Prove this statement.)

3. |L| = 1. (Exercise: Prove this statement.)

4. Therefore |A| = |P | |U | = ± |U |, with the sign given by |P |.
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Table 4.6 Example 1: Gaussian elimination and solvability: Unique solution

Equations
[

A | b
]

→ REF Row Operation Elementary Matrix Ei

x + y + z = 6

2x + 2y + z = 9

x + 3y = 7





1 1 1 6
2 2 1 9
1 3 0 7





r2 ← −2r1 + r2

r3 ← −r1 + r3





1 0 0
−2 1 0
−1 0 1









1 1 1 6
0 0 −1 −3
0 2 −1 1



 r2 ´ r3





1 0 0
0 0 1
0 1 0









1 1 1 6
0 2 −1 1
0 0 −1 −3



 REF

Back Substitution:

The last row of the REF(A) says−z = −3 =⇒ z = 3.

Substituting it in the row above, 2y − 3 = 1 =⇒ y = 2.

Substituting z and y in the first row, x + 2 + 3 = 6 =⇒ x = 1.

The complete and unique solution is: (x, y, z) = (1, 2, 3)

5. Since U is triangular, its determinant is the product of its

diagonal elements.

|U | =
n
∏

i=1

uii

6. In particular, if U does not have full set of pivots (and is rank

deficient), at least one of uii = 0 =⇒ |A| = 0.

In the second example, Table 4.7, we have modified the third

equation such that it is no longer consistent with the first two. We

again have as many equations as unknowns. However, after Gaussian

elimination, we can see that the last row reads
[

0 0 0 3
]

. It

translates to an equation 0 = 3, which indicates that the equations are

inconsistent. Note that rank(
[

A | b
]

) = 3 > rank(A) = 2.

Table 4.7 Example 2: Gaussian elimination and solvability: No solutions

Equations
[

A | b
]

→ REF Row Operation Elementary Matrix Ei

x + y + z = 6

2x + 2y + z = 9

x + y = 6





1 1 1 6
2 2 1 9
1 1 0 6





r2 ← −2r1 + r2

r3 ← −r1 + r3





1 0 0
−2 1 0
−1 0 1









1 1 1 6
0 0 −1 −3
0 0 −1 0



 r3 ← −r2 + r3





1 0 0
0 1 0
0 −1 1









1 1 1 6
0 0 −1 −3
0 0 0 3



 REF

The last row of the REF(A) is
[

0 0 0 3
]

, saying 0 = 3 =⇒ The system is inconsistent.
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Table 4.8 Ecample 3: More equations than unknowns, but solvable

Equations
[

A | b
]

→ REF Row Operation Elementary Matrix Ei

x + y + z = 6

2x + 2y + z = 9

x + 3y = 7

3x + y + z = 8







1 1 1 6
2 2 1 9
1 3 0 7
3 1 1 8







r2 ← −2r1 + r2

r3 ← −r1 + r3

r4 ← −3r1 + r4







1 0 0 0
−2 1 0 0
−1 0 1 0
−3 0 0 1













1 1 1 6
0 0 −1 −3
0 2 −1 1
0 −2 −2 −10






r2 ´ r3







1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1













1 1 1 6
0 2 −1 1
0 0 −1 −3
0 −2 −2 −10






r4 ← r2 + r4







1 0 0 0
0 1 0 0
0 0 1 0
0 1 0 1













1 1 1 6
0 2 −1 1
0 0 −1 −3
0 0 −3 −9






r4 ← −3r3 + r4







1 0 0 0
0 1 0 0
0 0 1 0
0 0 −3 1













1 1 1 6
0 2 −1 1
0 0 −1 −3
0 0 0 0






REF

The last row of the REF(A),
[

0 0 0 0
]

,says 0 = 0 =⇒ The system is consistent.

The third example in Table 4.8, we have added one more equation

to the system in Table 4.6. Thus, we have four equations for three

unknowns. But the augmented matrix reduces with the last row

reading 0 = 0, which means the fourth equation is consistent with

Table 4.9 Example 4: More equations than unknowns, with no solutions

Equations
[

A | b
]

→ REF Row Operation Elementary Matrix Ei

x + y + z = 6

2x + 2y + z = 9

x + 3y = 7

3x + y + z = 11







1 1 1 6
2 2 1 9
1 3 0 7
3 1 1 11







r2 ← −2r1 + r2

r3 ← −r1 + r3

r4 ← −3r1 + r4







1 0 0 0
−2 1 0 0
−1 0 1 0
−3 0 0 1













1 1 1 6
0 0 −1 −3
0 2 −1 1
0 −2 −2 −7






r2 ´ r3







1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1













1 1 1 6
0 2 −1 1
0 0 −1 −3
0 −2 −2 −7






r4 ← r2 + r4







1 0 0 0
0 1 0 0
0 0 1 0
0 1 0 1













1 1 1 6
0 2 −1 1
0 0 −1 −3
0 0 −3 −6






r4 ← −3r3 + r4







1 0 0 0
0 1 0 0
0 0 1 0
0 0 −3 1













1 1 1 6
0 2 −1 1
0 0 −1 −3
0 0 0 3






REF

The last row of the REF(A) is
[

0 0 0 3
]

, saying 0 = 3 =⇒ The system is inconsistent.
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Table 4.10 Example 5: Gaussian elimination and solvability: Infinity of solutions

Equations
[

A | b
]

→ REF Row Operation Elementary Matrix Ei

x + y + z = 6

2x + 2y + z = 9

x + y = 3





1 1 1 6
2 2 1 9
1 1 0 3





r2 ← −2r1 + r2

r3 ← −r1 + r3





1 0 0
−2 1 0
−1 0 1









1 1 1 6
0 0 −1 −3
0 0 −1 −3



 r3 ← −r2 + r3





1 0 0
0 1 0
0 −1 1









1 1 1 6
0 0 −1 −3
0 0 0 0



 REF

The last row of the REF(A) is
[

0 0 0 0
]

, indicating consistency. With two independent equations for three

unknowns, we get an infinity of solutions.

the rest. And rank(
[

A | b
]

) = rank(A) = 3, same as the number of

unknowns. Hence unique solution.

The fourth example is similar to the third one; we have added a

fourth equation in Table 4.9 as well. However, the new equation is

not consistent with the rest.

In the last example in Table 4.10 (which we used to illustrate the

complete solution with free variables), we have as many equations as

unknowns. After Gaussian elimination, we get the last row reading
[

0 0 0 0
]

; no zero=nonzero row, indicating that the equations

are consistent. However rank(
[

A | b
]

) = rank(A) = 2 with three

unknowns, which means we have infinitely many combinations of

(x, y, z) that can satisfy these equations.

4.5 Beyond Gaussian Elimination

In this chapter, we looked at the applications of Gaussian elimination

in computing determinants and solving equations. We briefly intro­

duced matrix inverses. The interplay between ranks, determinants

and inverses will be further explored in the next chapter.
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5
Ranks and Inverses of

Matrices

Everything is simpler than you think and at the same time

more complex than you imagine.

—Johann Wolfgang von Goethe

Along with determinants, the rank of a matrix is a number that

says a lot about the properties of the matrix. Unlike determinants,

however, rank is defined for all matrices, not merely square ones. And

rank is an integer, while determinant is a function of the elements of

the matrix, and belongs to the same field over which it is defined. For

square matrices, ranks and determinants are related to each other. In

fact, most things in Linear Algebra tend to be interconnected. In this

chapter, we will summarize what we already learned about ranks, and

expand on it. The full discussion of ranks, however, will have to wait

until we look at the underlying geometry of matrices and vectors.
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5.1 Rank of a Matrix

Earlier, we stated that the rank of a matrix is the number of pivots in its

row echelon form (REF), which we get through Gaussian elimination.

This algorithm is merely a series of elementary row operations, each

of which is about taking a linear combination of the rows of the

matrix. And, right from the opening chapters where we introduced

vectors and matrices (in §2.2.3, page 25), we talked about linear

combinations.

If we can combine a bunch of rows in a matrix so as to get a different

row, then the rows are not linearly independent. To state it without

ambiguity using mathematical lingo, for a matrix A ∈ Rm×n, we say

that a nonzero ith row (rT

i ) is a linear combination of the other rows

if we can write:

rT

i =
m
∑

j=1,j ̸=i

sjr
T

j , rj ∈ Rn, sj ∈ R

When we can write one row as the linear combination of the rest,

we say that that row is not linearly independent. Note that any row

that is not linearly independent can be reduced to zero using the

elementary row operations. Once a row is reduced to zero, it does

not have a pivot. Conversely, all nonzero rows do have pivots, and

they are linearly independent. Therefore, we can state that the rank

of a matrix is the number of linearly independent rows.

5.1.1 Row and Column Ranks

Strictly speaking, the number of linearly independent rows would be

the row rank of the matrix. Similarly, we can define a column rank,

which is the number of linearly independent columns of the matrix.

Or, the number of pivots when Gaussian elimination is performed

column­wise, using column­reduction operations.

We have a theorem that states that the row rank is the same as

the column rank. It is fairly easy to prove this fact. We will provide

some hints and leave it as an exercise after looking at various possible

shapes of matrices, the Gauss­Jordan algorithm and the canonical

form it produces (in §5.2.2, page 94). We also have the full proof in

one of the advanced topics, in §12.6 (page 235).
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5.1.2 Shapes of Matrices

A general matrix A ∈ Rm×n can be tall if the number of rows is

greater than the number of columns: m > n. Or it can be wide (or,

less charitably, fat) if it has more columns than rows: m < n. When

m = n, what we have is a square matrix.

For a square matrix, the best possible situation is that we may have

a pivot in every row/column. We cannot have more pivots than that.

Therefore, the rank r of the matrix has a maximum value of m = n.

A ∈ Rn×n =⇒ rank(A) f n

For a “tall” matrix, the best scenario is when we have a pivot in

each of the columns. We cannot have more than one pivot in the same

column. So we have r f n when A ∈ Rm×n, n < m. Similarly,

for a “wide” matrix, we have, r f m when A ∈ Rm×n, n > m.

Combining these two limits, we can write:

A ∈ Rm×n =⇒ rank(A) f min(m,n)

If the rank r = min(m,n), we call A a full­rank matrix; else, it is

rank deficient. If r = m, it is often called a full­row­rank (or if r = n,

full­column­rank) matrix.

5.1.3 Properties of Ranks

Here are some of the properties of ranks of matrices. Although listed

without any formal proof, the properties are either obvious, or derived

from the fact that the rank is the number of linearly independent

columns or rows, and that matrix multiplication is about taking their

linear combinations (as in the row and column pictures). The proofs

will have to wait till we learn more about the geometry associated

with matrices because ranks are closely linked to it.

For A ∈ Rm×n, we have:

1. The only matrix that has a rank of zero is the zero matrix, which

is a matrix that has all entries as zeros.

2. If B ∈ Rn×k, conformant for multiplication with A ∈ Rm×n

on the right,

rank(AB) f min(rank(A) , rank(B))
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3. If B ∈ Rn×k, conformant for multiplication with A ∈ Rm×n

on the right, with rank(A) = r and rank(B) = n (full­row

rank =⇒ k g n),

rank(AB) = rank(A) = r

This property follows from the column picture of matrix mul­

tiplication and the definition of rank as the number of lin­

early independent columns: The product AB has columns

that are linear combinations of the r independent columns

of A. Note that m g r and n g r (since rank(A) = r),

k g n (since rank(B) = n) =⇒ k g r. In other words,

the product AB ∈ Rm×k has enough rows and columns to

accommodate the rank of r. Or, stating it using still other

words, while multiplying on the right, B has enough rows and

columns to preserve the rank of A, subject to the condition

rank(AB) f min(rank(A) , rank(B)).

4. Similarly, if B ∈ Rk×m, conformant for multiplication with

A ∈ Rm×n on the left, with rank(B) = m (full­column rank),

rank(BA) = rank(A)

This property follows from the row picture of matrix multi­

plication and the definition of rank as the number of linearly

independent rows. The explanation is the transpose case of the

previous case. Keep in mind that these two properties (3 and

4) do not violate the condition in property (2).

5. If B ∈ Rm×n, same dimensions as A so that we can add them,

rank(A+B) f rank(A) + rank(B)

6. As a corollary of the previous property, we can say that if

rank(A) = r, we can write it as a sum of r matrices of rank

one, and we do not need more matrices. Although stated as an

innocuous­looking factoid, this property has important impli­

cations in computer science, in the context of data compression,

as we shall see later on.

7. A very important property that we will prove later on (much

later, in §12.6, page 235):

rank
(

AAT
)

= rank
(

ATA
)

= rank(A) = rank
(

AT
)
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ATA is called the Gram matrix, and has properties that make

it important in machine learning.

5.2 Gauss­Jordan Elimination

While discussing the Gaussian elimination algorithm in the previous

chapter, we ended up with the A = PLU decomposition. The

U matrix had the same determinant as A (and P contained the

information about the sign of the determinant).

If we are not really concerned about computing the determinant, but

only want solve the system of linear equations Ax = b, we can keep

applying elementary row operations instead of the back substitution

we discussed earlier. This algorithm to solve linear equations is

known as Gauss­Jordan Elimination.

As a reminder to ourselves, we have the elementary row operations,

as listed below:

• Swap any two rows.

• Multiply any row by a scalar.

• Add a multiple of any row to another.

In the previous chapter, although we listed the three elementary op­

erations, we did not use the second one, namely scaling a row. In the

Gauss­Jordan algorithm, we will use it as well.

Before stating the steps involved in Gauss­Jordan elimination, let’s

look at the example in Figure 5.1. Here, we start from the REF of

the augmented matrix of the equations x + y = 5, x − y = 1 (see

Figure 4.2), and keep applying the elementary row operations, which

do not affect the solution of the system of equations.

In this case, the REF of the augmented matrix,
[

A | b
]

, becomes

the identity matrix in the coefficient (A) side, at which point the

constants column contains the solution. Remember, each row of

the augmented matrix (whether row reduced or not) represents an

equation. What equation does the top row of final matrix from

Gauss­Jordan elimination represent? It reads: 1x+0y = 3 or x = 3.

Similarly, the second row gives us the equation y = 2.

The aim of the Gauss­Jordan algorithm is to get to an identity

matrix in the coefficient part of the augmented matrix. In other
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The Upper Triangular Matrix in the row-echelon form (REF) in Gaussian Elimination 

becomes the Identity matrix in the Reduced REF (RREF) in Gauss-Jordan Elimination
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from Row 2:

Fig. 5.1 Example of Gauss­Jordan elimination to solve a simple system of linear equations

words, try to make A in Ax = b an I , failing which, get as close to

the identity matrix as possible. This form of the coefficient matrix is

called the Reduced Row Echelon Form, or RREF, also known as the

Canonical Form. For a full­rank, square matrix, its canonical form

is the identity matrix of the same size, as we saw in the example in

Figure 5.1. We will soon discuss other combinations of shapes and

ranks and their canonical forms.

Reduced Row Echelon Form

Definition: A matrix is in its Reduced Row Echelon or Canonical

Form if it has the following characteristics:

1. It is in REF. (See §4.2.3, page 69)

2. Every nonzero row is scaled such that the pivot value is one.

3. In every pivot column, the only nonzero element is the pivot.

As we can see, the Reduced Row Echelon Form (RREF) is the Row

Echelon Form (REF) with some special properties, as its name indi­

cates. The actual definition of REF and RREF are a bit fluid: Different

textbooks may define them differently. For instance, some may sug­

gest that REF should have all pivots equalling unity, through scaling.

Such differences, however, do not affect the conceptual significance

of the forms and perhaps not even their applications.
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Gauss­Jordan Elimination: Algorithm

We can state the Gauss­Jordan algorithm also using pseudo­code so that the steps may
be clearer to the students of computer science.

Input: A =
[

aij
]

∈ Rm×n

Output: RRRF(A) ∈ Rm×n

Get the REF using Gaussian Elimination

1: A← REF(A); pivots← pivots of A

2: for i = 1 to m do

3: if pivotsi = 0 then

4: Exit for loop

5: end if

Scale the row to get unit pivot

6: ri ←
ri

pivots
i

Subtract scaled pivot row from other rows to get zero pivot column

7: for j = 1 to m do

8: if j ̸= i then

9: k ← pivot column index

10: rj ← rj − ajkri
11: end if

12: end for

13: end for

14: return A as RREF

Note that while the REF (which is the result of Gaussian elimina­

tion) can have different shapes depending on the order in which the

row operations are performed, RREF (the result of Gauss­Jordan) is

immutable: A matrix has a unique RREF. In this sense RREF is more

fundamental than REF, and points to the underlying characteristics

of the matrix.

5.2.1 The Algorithm

With the insight from the example in Figure 5.1, we can state the steps

in the Gauss­Jordan algorithm (for a matrix A =
[

aij
]

∈ Rm×n) as

follows:

1. Run the Gaussian elimination algorithm (§4.2.4, page 70) to

get REF(A).
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2. Loop (with index i) over the rows of REF(A) and scale the ith

row by 1
aik

(where k is the column where Pivoti appears) so that

Pivoti = 1.

3. Loop (with index j) over all the elements of the pivot column

from 1 to i− 1, multiply the ith row with−ajk and add it to the

j th row to get zeros in the kth for all rows above the ith row.

4. Loop back to step 2 (with i← i + 1) and iterate until all rows

or columns are exhausted.

Let’s look at two examples to illustrate the outputs of Gauss­Jordan

algorithm. Starting from the REF of the augmented matrices in Ta­

bles 4.7 and 4.10, we find their RREF. The examples are in Tables 5.1

and 5.2.

Table 5.1 Gauss­Jordan on a full­rank, square coefficient matrix, giving us the unique

solution

Equations
[

A | b
]

REF RREF

x + y + z = 6

2x + 2y + z = 9

x + 3y = 7





1 1 1 6
2 2 1 9
1 3 0 7









1 1 1 6
0 2 −1 1
0 0 −1 −3









1 0 0 1
0 1 0 2
0 0 1 3





Here, we start from the REF form of
[

A | b
]

(as in Table 4.7), and do further row reduction to get

I in the coefficient part. In other words, in total, we apply the Gauss­Jordan algorithm. We can then

read out the solution (x, y, z) = (1, 2, 3) from the augmented part of the RREF.

If we started from the REF of
[

A | b
]

in Table 4.9, where we have

inconsistent equations, the RREF would be an uninteresting 4 × 4
identity matrix. What it says is that we have a rank of four in

[

A | b
]

,

with only three unknowns, indicating that we have no solutions.

Notice that we did not write down the elementary matrices for the

Gauss­Jordan algorithm, as we diligently did for Gaussian elimina­

tion? The reason for doing that in Gaussian elimination was to arrive

at the A = PLU decomposition so as to compute its determinant.

We do not use Gauss­Jordan to compute determinants, although we

could, if we wanted to.

5.2.2 Shapes of Canonical Forms

We looked at what we called “tall” and “wide” matrices in §5.1.2.

What are the canonical forms of matrices of these various shapes?

Remember, canonical form is an alias for RREF.
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Table 5.2 Gauss­Jordan on a rank­deficient coefficient matrix, resulting in an infinity of

solutions

Equations
[

A | b
]

REF RREF

x + y + z = 6

2x + 2y + z = 9

x + y = 3





1 1 1 6
2 2 1 9
1 1 0 3









1 1 1 6
0 0 −1 −3
0 0 0 0









1 1 0 3
0 0 1 3
0 0 0 0





This second example starts from the REF form of
[

A | b
]

from Table 4.10. The Gauss­Jordan

algorithm gets us as close to the identity matrix as possible in the coefficient part of
[

A | b
]

. The

solution is: z = 3 and x + y = 3, which is usually written as (x, y, z) = (3− t, t, 3).

Square Matrices Let’s start with a square matrix of full rank: A ∈
Rn×n, rank(A) = n. Since all the rows have pivots, and since we can

scale the pivots to get ones, we will end up with the identity matrix

I as the canonical form. In fact, this is what we did in Table 5.1, for

the coefficient matrix.

A ∈ Rn×n, rank(A) = n =⇒ A
RREF
−−−→ In ∈ Rn×n

where the symbol In stands for the identity matrix in Rn×n.

What happens if the matrix is rank deficient? If rank(A) = r < n,

we have only r pivots, which the Gauss­Jordan algorithm will place

in the first r rows. The last n− r rows of the RREF, therefore, will be

zeros. The top r rows will contain the identity matrix I because the

pivots will be scaled to one, and they will be used to eradicate other

elements in the pivot columns.

The pivot columns, however, may not be ideally placed to give

us an Ir matrix in the top­left corner, but may appear interspersed

among other pivot­less columns. As we remember from solving

linear equations, columns with no pivots result in free variables, and

we may call these columns part of a matrix F . Thus the canonical

form of a rank­deficient square matrix looks like:

A ∈ Rn×n, rank(A) = r < n =⇒ A
RREF
−−−→

[

Ir · Fr×(n−r)

0(n−r)×n

]

∈ Rn×n

We use the expression I ·F to indicate that I and F are shuffled

in together. Note that · is not a standard notation for this purpose.

In Table 5.2, we have an example of such a system: The coefficient

matrix is a square matrix with rank deficiency. Looking at the RREF

column of the table, we can see that pivot columns do make an iden­

tity matrix, but the pivot­less, free­variable columns are interspersed
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among it. The pivot columns are 1 and 3, and the free variable is in

column 2. The bottom m− r = 1 row is a zero row.

Tall Matrices For a “tall” matrix of full (column) rank, we will get

pivots for the first n rows, and the rest m−n rows will be zeros. The

n pivots can be normalized so that the top part of the canonical form

becomes In, and we will have:

A ∈ Rm×n, rank(A) = n < m =⇒ A
RREF
−−−→

[

In

0(m−n)×n

]

∈ Rm×n

If the tall matrix is rank deficient, we again have an I and F in

the top r rows, followed by zeros. The pivot and pivot­less columns

may get interspersed among each other, as in the case of the square

matrix, giving us a canonical form that may see identical to the one

for the rank­deficient square matrix, but the indices are different: It

has one instance of n replaced by m.

A ∈ Rm×n, rank(A) = r < n < m =⇒ A
RREF
−−−→

[

Ir · Fr×(n−r)

0(m−r)×n

]

∈ Rm×n

Wide Matrices Moving on to “wide” matrices (with more columns

than rows), if they have full (row) rank, they will get a canonical form

that may not cleanly separate into I and F . We can see an example in

Table 5.3, which has two independent and consistent equations, and

therefore a full­row­rank
[

A | b
]

. The first and third columns have

pivots, and make an identity matrix, but the free­variable column

appears in between. The general shape of a full­row­rank, wide

matrix, therefore, looks like:

A ∈ Rm×n, rank(A) = m < n =⇒ A
RREF
−−−→

[

Im · Fm×(n−m)

]

∈ Rm×n

For a rank­deficient wide matrix also, the canonical form is similar

to the other rank­deficient cases. What we had for the coefficient

matrix (or for the whole augmented matrix
[

A | b
]

) in Table 5.2

was a wide matrix (not enough independent equations) with rank

deficiency. Looking at the RREF column of the table, we can see that

pivot elements do make an identity matrix, but the pivot­less, free

variable columns are interspersed among it. The pivot columns are 1
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Table 5.3 Gauss­Jordan on a rank­deficient “wide” coefficient matrix

Equations
[

A | b
]

REF RREF

x + y + z = 6

2x + 2y + z = 9

[

1 1 1 6
2 2 1 9

] [

1 1 1 6
0 0 −1 −3

] [

1 1 0 3
0 0 1 3

]

This third example is similar to the one in Table 5.2, but we removed the third equation. The

Gauss­Jordan algorithm gets us as close to the identity matrix as possible in the coefficient part of
[

A | b
]

. Notice how the columns of the identity matrix and the pivot­less columns are interspersed.

and 3, and the free variable is in column 2. The rest m− r rows are

zeros. We represent this as:

A ∈ Rm×n, rank(A) = r < m < n =⇒ A
RREF
−−−→

[

Ir · Fr×(n−r)

0(m−r)×n

]

∈ Rm×n

Summary We see that the Gauss­Jordan algorithm tries very hard

to get to an identity matrix as the RREF. If the matrix has full rank,

it succeeds fully in the case of square and tall matrices, with a clean

identity matrix visible in the RREF. In the case of a wide matrix,

it may not be able to cleanly separate the identity matrix from the

pivot­less columns. If the matrix is rank deficient, in general, the

RREF will have the columns of the identity matrix (which are pivot

columns) interspersed with the free­variable columns. In any case,

the RREF is unique for a matrix, unlike REF, the output of Gaussian

elimination, which depends on the order in which the elementary row

operations are performed.

Earlier, we stated that the row and column ranks were the same

for any matrix, and that we would provide a hint to prove it. This

whole section is the hint, plus the fact that elementary row operations

do not change row or column rank. Neither do elementary column

operations. There is nothing that prevents us from doing both, one

after the other, if we want, and then asserting the fact that the row and

column ranks do not change.

5.3 Inverse of a Matrix

We came across the inverse of matrices in a few previous occasions,

starting with the nomenclature, where we defined it as that matrix

which, when multiplied with the original gives us the identity matrix.
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We again saw it in the properties of determinants: If a matrix has zero

determinant, it cannot be inverted. While talking about elementary

matrices, we spoke of their inverses as those matrices that would

reverse the effect of multiplying with the original matrices. Let’s

recap and expand on what we have learned about inverses.

5.3.1 Invertibility

A square matrix is invertible if we can compute its inverse, obviously.

Invertibility can be expressed in a variety of ways, as listed below.

For a matrix A ∈ Rn×n, if A−1 exists, we may say:

• A is invertible.

• A is not singular.

• A is not degenerate.

• A has n pivots in its REF.

• A has full rank: rank(A) = n.

• The system of linear equations Ax = b has a unique solution.

• A represents a linear automorphism. (See §3.3, page 51.)

These are the statements about the invertibility of A that we have

learned so far. We have quite a few more of such statements, related to

the linear independence of the rows and columns of A, the geometry

of its so­called fundamental spaces, its eigenvalues etc. We will list

them later, when appropriate.

5.3.2 Properties of Inverses

In addition to the various statements about invertibility, we also have

a list of some interesting properties of inverses.

1. Inverse of an inverse is the original matrix: (A−1)
−1

= A

2. Scaling: When we multiply a matrix by a scalar, its inverse

gets multiplied by the reciprocal of the scalar:

(sA)−1 = s−1A−1 because

(sA) s−1A−1 = (ss−1)AA−1 = 1 I = I
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3. Product Rule: Similar to the product rule of transposes, the

inverse of a product is the product of the inverses of the factors

in the reverse order:

(AB)−1 = B−1A−1 because (AB)B−1A−1

= A
(

BB−1
)

A−1 = AIA−1 = AA−1 = I

We used this property in constructing the lower triangular ma­

trix L (on A = LU ) from the inverses of elementary matrices.

(See §4.3.4, page 80.)

4. Involutory Matrix: A matrix whose inverse is the same as

itself is called an involutory matrix. IfP is involutory, P 2 = I ,

as the single­row­exchange permutation matrices.

5. The determinant of the inverse of a matrix is the reciprocal of

its determinant:
∣

∣A−1
∣

∣ =
1

|A|

5.3.3 Gauss­Jordan Method to Compute Inverse

The inverse of A ∈ Rn×n, if it exists, is easily computed as:

[

A | I
] RREF
−−−→

[

I | A−1
]

We have two ways of seeing why this works. The first explanation

below is more elegant and less complicated than the second one that

follows.

A Using Block Multiplication

The first and most elegant explanation of why Gauss­Jordan elimina­

tion gives A−1 uses the Special Case of Block­wise Multiplication

we discussed on page 38. If we have a block matrix
[

A | I
]

∈ Rn×2n,

we can multiply it by another matrix E ∈ Rn×n as:

E
[

A | I
]

=
[

EA | EI
]

=
[

EA | E
]

If E happens to be the elementary matrix that takes A to its RREF,

then the process of multiplying by E on the left is the same as per­

forming Gauss­Jordan elimination: E
[

A | I
]

= RREF
([

A | I
])

.
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And since we start with a full­rank, invertible A, its RREF is nothing

but I . Putting it all together, we write:

RREF
([

A | I
])

=
[

EA | E
]

=
[

I | E
]

Comparing the left blocks in the equation above, we get EA =
I =⇒ E = A−1, and we can see E sitting as the right block in the

final term. In other words,

[

A | I
] RREF
−−−→

[

I | A−1
]

B Using Super­Augmented Matrices

The previous explanation was elegant because we worked at the level

of matrices (using matrix­algebra, as it were), rather than descend

to the column/row/element level. If we need another explanation,

we can get it by looking at A as encoding one system of equations

Ax = b, and Gauss­Jordan giving us the solution. If we have

multiple systems of equations with the same coefficient matrix, we

can perform Gauss­Jordan elimination on all of them in one go.

Limiting ourselves to the simple case of full­rank, square coeffi­

cient matrixA so thatA−1 exists, if we haveAx = b1 andAx = b2,

we could write a “super” augmented matrix like,
[

A | [b1 b2]
]

. If the

RREF of this augmented matrix becomes
[

I | [b′
1
b′
2
]
]

, we know that

b′
1

is the solution to the first system, and b′
2

that of the second one.

In other words:

[

A | [b1 b2]
] RREF
−−−→

[

I | [b′
1
b′
2
]
]

=⇒ Ab′
1
= b1 and Ab′

2
= b2

More generally, we could write this complicated super system as

(again, limiting ourselves to A,B,B′ ∈ Rn×n):

AX = B =⇒
[

A | B
] RREF
−−−→

[

I | B′
]

Noting that X is a symbolic matrix (xij are symbols, not numbers)

and B′ is the solution that satisfies the equations, we can confidently

write:

AB′ = B

We know that there is nothing special about this B. In other words,

if we have a A ∈ Rn×n, we can build any number of systems of

linear equations by an arbitrary choice of B. Let’s therefore choose
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B = I , and investigate what it says. With this choice, we get:

AB′ = I

What does this equation mean? It says that B′ is the matrix that,

when multiplied with A results in the identity matrix I , which is the

definition of the inverse of A. In other words, B′ = A−1

Remembering again that B′ is merely the part of the result of

Gauss­Jordan running on
[

A | B
]

, and that B now is I , we get the

same cryptic recipé for A−1:

[

A | I
] RREF
−−−→

[

I | A−1
]

Elaborating on it: To find the A−1,

1. Construct the augmented matrix
[

A | I
]

.

2. Run the Gauss­Jordan algorithm on it.

3. If we get the identity matrix I in the place of the original matrix

A in
[

A | I
]

, the augmented part will now contain the inverse

A−1.

4. If we cannot get I , it means A is singular.

We see that Gauss­Jordan elimination (which is an extension of

Gaussian elimination) gives us a recipé for computing the inverse of

any invertible matrix A. It so happens that the Gauss­Jordan method

of finding the inverse is the one that is computationally most efficient.

5.3.4 Cofactors to Compute Inverse

In addition to the Gauss­Jordan algorithm, we also have an analytic

formula, similar to the Laplace expansion for determinant compu­

tation, Eqn (3.5), to directly compute the inverse, using the same

cofactors we defined in §3.3.2, page 56.

Refreshing our memory, every element in a matrix A =
[

aij
]

has

cofactor Cij , which is the determinant of the submatrix obtained by

deleting the ith row and j th column of A, with an associated sign. We

can put these cofactors (being just numbers) in a matrix of the same

size to get C = [Cij]. The transpose of this matrix of cofactors goes

by many names, such as the adjugate, the classical adjoint and the

adjoint matrix.



102 Ranks and Inverses of Matrices

Once we have the matrix of cofactors, we can compute its transpose

(which is the adjugate matrix) and then the inverse as:

A−1 =
1

|A|
CT (5.1)

Although this equation looks compact, it is horribly expensive com­

putationally. As we can see from the formula, when |A| = 0, we

cannot compute A−1 and the matrix A is singular.

5.3.5 Inverse of a 2 × 2 Matrix

For a 2×2 matrix, we can apply Eqn (5.1) and write down its inverse.

A =

[

a c
b d

]

=⇒ |A| = ad− bc and A−1 =
1

ad− bc

[

d −c
−b a

]

Remember this formula as: Swap the diagonal elements and switch

the sign of the non­diagonal elements. And then divide the determi­

nant.

5.4 Left and Right Inverses

Left inverse of a matrix A is that matrix which produces I when

multiplied on the left of A. Similarly for the right inverse, it is

the multiplication on the right. In other words, if BA = I , then

B = A−1

Left. And, if AC = I , then C = A−1

Reft.

Although we did not specify it, the inverse A−1 we have been

talking about is a double­sided inverse: AA−1 = I = A−1A.

For a full­rank, square matrix, we can prove that if A,B,C ∈
Rn×n, rank(A) = n, and AB = CA = I , then B = C.

For “tall” or “wide” matrices (as described in §5.1.2, page 89),

the situation is a bit more complicated, even if they are of full rank.

Remember, for tall matrices full rank means full column rank, and for

wide ones, it means full row rank. To state it with deadly mathematical

precision:

Tall, full rank =⇒ A ∈ Rm×n,m > n, rank(A) = r = n

Wide, full rank =⇒ A ∈ Rm×n,m < n, rank(A) = r = m

For tall matrices, what is the shape of ATA? It is a square matrix of

size n×n = r×r. It has a rank of r, as we stated in Property 7, while
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listing the properties of ranks in §5.1.3, page 89. When A has full

column­rank, r = n, and ATA is full rank as well. This so­called

Gram matrix is therefore an invertible matrix, and
(

ATA
)

−1

exists.

It is also symmetric because
(

ATA
)T

= ATA. With a bit of matrix

algebra wizardry, we can write:

(

ATA
)

−1 (

ATA
)

= I =⇒
(

(

ATA
)

−1

AT

)

A = I (5.2)

This is of the form BA = I , and therefore
(

(ATA)−1AT
)

is

something like an inverse of A, when multiplied on the left. We will

call this the left inverse of A, A−1

Left. Remember, A ∈ Rm×n,m > n
is not square. Although we cannot multiply A on the right with A−1

Left

(because of conformance requirements is met), what we will get is a

matrix in Rm×m with a rank of n < m. And the product cannot be

an identity matrix because it is rank­deficient.

In data science, our matrices tend to be “tall,” with m k n, and

ATA ∈ Rn×n is a nice, small matrix. Moreover, it tends to be a full­

rank matrix because data points are usually measurements, and one

measurement is very unlikely to be a linear combination of others.

AAT ∈ Rm×m, on the other hand, is a horrible, huge matrix with a

rank r = nj m, which means it is hopelessly rank deficient.

When we have a “wide” matrix, however, it is the other Gram

matrix, AAT ∈ Rm×m, that is the nice matrix. All we wrote down

above for the left inverse will work for the right inverse with obvious

and trivial changes, and altogether we get the following results:

Tall, full rank : A ∈ Rm×n,m > n, r = n =⇒ A
−1

Left = (ATA)−1AT

Wide, full rank : A ∈ Rm×n,m < n, r = m =⇒ A
−1

Reft = AT(AAT)−1

5.5 Cramer’s Rule

Related to the matrix of cofactors and the analytic formulas for de­

terminant and inverse of matrices (Equations (3.5) and (5.1)) is a

beautifully compact and elegant (albeit computationally useless) for­

mula for solving a system of linear equations. This formula is known

as the Cramer’s Rule. It states that for a system of linear equations

Ax = b with a square, invertible A and x = [xj], the solution is
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given by:

xj =
|Aj |

|A|
(5.3)

where Aj is the matrix formed by replacing the j th column of A with

b.

To recap, we have learned four ways of solving the system of linear

equations Ax = b.

1. Do Gaussian elimination on the augmented matrix
[

A | b
]

,

followed by back substitution.

2. Perform Gauss­Jordan elimination on the augmented matrix
[

A | b
]

(which is not really different from the previous method).

3. If A is a full­rank, square matrix Ax = b =⇒ x = A−1b.

This is often written in some programs as x = A\b, indicating

something like dividing by A on the left.

4. Use Cramer’s rule, again if A is a full­rank, square matrix.

As we can see, although the methods (3) and (4) are elegant, they

work only for the ideal situation of unique solutions. Besides, they

are (especially the Cramer’s rule method is) prohibitively expensive

to compute for nontrivial matrix sizes. To top it off, their numeric

stability also is questionable.

5.6 Algebraic View of Linear Algebra

We have completed algebraic view of Linear Algebra, by which

we meant determining the solvability conditions of systems of lin­

ear equations and characterizing the solutions. Along the way, we

touched upon the concepts of ranks and determinants, inverses and a

couple of decompositions.

While looking at linear equations, we did speak of their shapes in

coordinate spaces: a linear equation is a line in R2 and a plane in

R3, and their solutions are the intersections of lines or planes. While

this view is undoubtedly geometric, the geometric view of Linear

Algebra we will start in the next part of the book is the deeper and

richer structure of vector spaces and subspaces and their properties.

The insights from such geometry, as we shall see, will have direct
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relevance to certain algorithms, and a wider relevance to how we

discuss and present our ideas in computer science.
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Part III

Geometric View



6
Vector Spaces, Basis and

Dimensions

To those who do not know mathematics, it is difficult to get

across a real feeling as to the beauty, the deepest beauty, of

nature. . . If you want to learn about nature, to appreciate

nature, it is necessary to understand the language that she

speaks in.

—Richard Feynman

The notion of linear combinations is central to Linear Algebra,

which is why we started seeing it from the very first chapter of this

book. Now that we are taking a geometric view to understanding the

subject, we will deal with this notion and the associated concepts in

much more detail and in a formal way.

6.1 Linear Combinations

Let’s start by reminding ourselves of the basic operations on vectors

(and indeed matrices):

• Vectors can be scaled. A vector multiplied by a scalar is another

vector, which means the collection of vectors is closed under

scalar multiplication.
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• Vectors can be added. The set of vectors is closed under vector

addition as well: When we add vectors, we get other vectors.

We can do both these operations together: Take a bunch of vectors,

scale them and add the scaled versions, which is exactly what we mean

by a linear combination. As we can see from the basic operations,

the set of vectors is closed under linear combinations as well; when

we take linear combinations, what we get are other vectors. Stating

this rather obvious fact formally:

∀xi ∈ Rn,si ∈ R and any nonnegative integer k,

z = s1x1 + s2x2 + · · ·+ skxk

=
k∑

i=1

sixi ∈ Rn is a linear combination

(6.1)

Let’s look a few examples of linear combinations:
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Fig. 6.1 Linear combinations of two vectors in R2. We can create all possible vectors in

R2 starting from our x1 and x2.

1. Two vectors in R2: In Figure 6.1, we start with two vectors

x1 and x2. The first linear combination we make is the sum

z1 = x1 + x2, which is the same as z1 = s1x1 + s2x2, with

the scalar multipliers s1 and s2 set to 1. Then we change the

values of the scalars s1 and s2 so as to get other vectors. As

we can see, we can get to any vector in R2 by the appropriate

choice of s1 and s2.
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Fig. 6.2 Linear combinations of two vectors in R2. Starting from our x1 and x2, we

cannot get out of the line defined by the vectors, no matter what scaling factors we try. The

vectors are not linearly independent.

2. In Figure 6.2, we again have two vectors. In this case, however,

when we take all possible linear combinations, we do not seem

be able get to all vectors in R2; we are confined to one line.

In order see why, we have to first notice that the two vectors

we defined were not independent of each other. Our second

vector, x2 is a scalar multiple of x1 : x2 = 2x1. Therefore,

when we take a linear combination z = s1x1 + s2x2, what we

are actually doing, in effect, is only scaling one vector.

z = s1x1 + 2s2x1 = (s1 + 2s2)x1 = sx1

All the scaled versions of x1 fall in the same direction as x1.

3. In the third example. Figure 6.3, we move on to R3, but

with vectors very similar to the first case, but with a third

component (because vectors in in R3 have three components)

equal to zero. When we take all possible linear combinations

z = s1x1+s2x2, we can see that the third component of z can

never be anything other than zero, and therefore all such linear

combinations live on the xy plane.

4. In Figure 6.4, we have added some nonzero values as the third

component of x1 and x2. Still, the linear combinations of
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Fig. 6.3 Linear combinations of two vectors in R3. All the vectors we create starting

from our x1 and x2 live on the xy plane. We do not have enough vectors to span the whole

of R3.
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Fig. 6.4 Linear combinations of two vectors in R3. Here again, we do not have enough

vectors to span R3. The linear combinations of x1 and x2 live in a plane defined by the

two vectors. (Not drawn to scale.)

the two vectors, z = s1x1 + s2x2, all fall on a plane de­

fined by the two vectors, or, equivalently, by the three points

(0, 0, 0), (1, 2, 2) and (3, 1,−1.5). Two vectors are not enough

to span R3.
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5. As we can also see from Figure 6.4, we have a hard time

depicting to general vectors in R3. In this fifth example, we

are going to move to three vectors, but will not attempt to draw

them. If we have the following three vectors, we still cannot

get all vectors in R3:

x1 =





1
2
0



x2 =





3
1
0



x3 =





11
17
0





In addition to the two vectors in Figure 6.3, we have added a

third vector, but with its third component equal to 0. Now we

take all possible linear combinations z = s1x1+ s2x2+ s3x3.

The third component of z will have to be zero no matter what

scaling factors we try, and we are confined to the xy plane.

Although it may not be obvious, x3 is a linear combination of

x1 and x2, which we can see by solving for s1 and s2 in the

equation x3 = s1x1 + s2x2.

6. In the next example, we start with the two vectors in Figure 6.4

and add a third vector, which we know is a linear combination

of the two. We have these three vectors in R3:

x1 =





1
2
2



x2 =





3
1
−1.5



x3 =





9
8
3



 = 3x1 + 2x2

The three vectors, being linear combinations of each other, are

on the same plane in R3. All other linear combinations we can

make with them will fall on the same plane.

7. In the last example, we will start from the simpler vectors in

Figure 6.3, which live on the xy plane in R3. We add a simple

third vector with a component in the third direction.

x1 =





1
2
0



x2 =





3
1
0



x3 =





0
0
1





Note that none of these three vectors can be written as the linear

combination of the other two. Now we are no longer confined

to any plane. We can indeed create any vector in R3 as a linear

combination of these three.
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We have listed seven examples with many permutations of linear

combinations of vectors above. In order to make sense of them, and

to introduce some terms that we will define very soon, let’s take stock

of what we have done. In the first example, we had two linearly

independent vectors in R2. Two linearly independent vectors are

enough to span R2, which is the collection of all possible vectors

with two components. We will soon call R2 a vector space. In

the second example, we had two vectors, but they were not linearly

independent. What they spanned was a subset of R2, which we will

call a subspace. In the third example, we went on to R3, but with

two linearly independent vectors, which were not enough to span

the whole vector space. Instead, they spanned a subspace that was

the xy plane. In the fourth example, we again had only two vectors

in R3, spanning a subspace. In the fifth and sixth examples, we

did add the third vector, but it was not linearly independent of the

other two, and therefore, the spans of the three vectors were still

only subspaces. Finally, in the seventh example, we had three good,

linearly independent vectors that could span the entirety of R3.

Our job now is to define the unfamiliar terms in the previous

paragraph, express them in mathematical language, and generalize

them to higher dimensions, Rn. Clearly, we will not be able to

visualize them, but that inability will not prevent us from developing

insights and intuitions that will apply to all dimensions and datasets.

6.1.1 Spans of Vectors

Definition: The set of all possible linear combinations of a given set

of vectors is their span. To write it mathematically,

Given k vectors xi ∈ Rn, span({xi}) =

{

z | z =

k
∑

i=1

sixi

}

for any k scalars si ∈ R

(6.2)

In Figure 6.1, the span of the red and blue vectors is all possible

vectors in R2. In Figure 6.2, the span of the two vectors is a much

smaller subset: Only those vectors that are in the same direction (the

dotted line in the figure) as the original two, collinear vectors.
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6.1.2 Cardinality

Definition: The number of vectors in the span is called its cardinality.

Cardinality is just a fancy name for the size or the number of elements

in a set. It applies to our notion of span of vectors as well as the set

of vectors that define a span, as in Eqn (6.2) for instance. The

cardinality of the former is indeed infinity (as there are an infinity of

linear combinations we can form), while the cardinality of the latter

(the vectors of which we are forming the linear combinations) is k.

6.1.3 Linear Independence

Definition: The vectors in a set are linearly independent if we cannot

write any one of them as a linear combination of the others. An

equivalent definition, again in mathematical lingo, is that the neces­

sary and sufficient condition for a given set of k vectors xi ∈ Rn to

be linearly independent is that there be no set of scalars si ∈ R that

are not all zero such that:

k
∑

i=1

sixi = 0 (6.3)

Clearly, with all si = 0, the sum is always the zero vector. What we

are looking for is a set of scaling factors with at least some nonzero

numbers such that the sum is 0. If we can find such a set, the vectors

are not linearly independent. They are linearly dependent.

Looking at the example in Figure 6.2, we have x2 = 2x1 =⇒
x2 − 2x1 = 0, the zero vector as a linear combination with nonzero

scalars, which means x1 and x2 are not linearly independent. Sim­

ilarly, for the sixth example in the list of examples above, x3 =
3x1+2x2 or 3x1+2x2−x3 = 0, again the zero vector as a a linear

combination with nonzero scalars, implying linear dependence.

6.2 Vector Spaces and Subspaces

For our purpose in this book, we will define a vector space as a set of

all possible vectors. In fact, while defining vectors, their operations

and properties, we were indirectly defining vector spaces as well. For

instance, we said when we scale a vector or add two vectors, we get

another vector, which is the same as saying that the set of vectors
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is closed under scalar multiplication and vector addition. We also

listed the associativity, commutativity and distributivity properties

of vector operations, which are, in fact properties of the underlying

vector space. Although mathematical puritans may look askance at

such sloppiness, we will consider it a pardonable foible of computer

scientists. We will, however, present the full and precise definition in

all its mathematical glory in §8.1, page 144.

6.2.1 Vector Space

Definition: The set V of all vectors x ∈ Rn is a vector space (AKA

linear space) if the operations of a scalar multiplication and a vector

addition (with the right properties as specified earlier) are defined for

x and V is closed under the operations.

As we mentioned earlier, any mathematical object that can fulfill

the requirements of vectors is a vector, as far as Linear Algebra is

concerned. And a closed set of any such vectors would be a vector

space. Here are some examples of vector spaces:

Coordinate Space: The usual Euclidean space of points is a vector

space, treating the numbers and coordinates in them as vectors.

For instance, the good old number line (same as R) is a vector

space. If we treat the (x, y) coordinates in R2 as vectors, the

two­dimensional plane, being a collection of such coordinates,

is a vector space. Such spaces (Rn) are called coordinate

spaces, naturally.

Space of Matrices: Matrices also have operations identical to vec­

tors, as we defined them. Vectors are indeed single­column

matrices. Therefore, we can treat a set of matrices (of the

same size) as a vector space. For instance, if we create a set

M = {A | A ∈ Rm×n}, it would be a vector space.

Complex Numbers: The set of complex numbers (C) is a vector

space as well, very similar to the coordinate space of R2.

6.2.2 Subspace

Definition: Given a vector space V , a subset of it is a vector (or

linear) subspace S if it is closed under the same operations of a scalar

multiplication and a vector addition defined in V . In other words, for
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any vectors xi ∈ S , the same operations (as defined in V) applied on

them results in other vectors yi ∈ S .

In practice, we can say that all linear combinations of the vectors

in S have to be in S for it to qualify as a subspace. Therefore, a

practical definition of a subspace S ¦ V is that it is the span of a

given set of vectors in V .

In Figure 6.2, we have two vectors, x1 and x2, that were scaled

versions of each other. All their linear combinations (which are, in

fact, just scaled versions of x1) form a line in R2. This line represents

a subspace because, when we add any two vectors in this line, we get

another vector that is collinear with it. Note that the zero vector has

to be a part of any subspace because the trivial linear combination

of the vectors (that define the span, which is the subspace) with zero

scalars is still a linear combination and has to be in the subspace.

If we have two subspaces, their intersection is a subspace, but

their union is not. Let’s formally prove the intersection part of this

statement.

1. Let S1 and S2 be the subspaces and I = S1 ∩ S2, with x1,x2 ∈ I.

2. By the definition of the intersection, x1,x2 ∈ S1 and x1,x2 ∈ S2.

3. Since S1 is a subspace, for any two scalars, s1 and s2, s1x1 + s2x2 ∈ S1.

4. Since S2 is a subspace, for the same scalars, s1x1 + s2x2 ∈ S2 as well.

5. Therefore, s1x1+s2x2 ∈ I, since it is in bothS1 andS2 =⇒ I = S1∩S1
is a subspace.

6.2.3 Orthogonal Subspaces

Orthogonality in Linear Algebra is a generalization of perpendicular­

ity in geometry; the latter applies to lines or other shapes where the

concept of angles makes sense. Two lines are perpendicular when

the angle between them is 90◦. On the other hand, two vectors are

orthogonal when their dot product is zero. In our definition of vectors

for the purpose, there is little difference between orthogonal vectors

and perpendicular vectors, but there can be, with other definitions of

vectors and their dot products. We shall, therefore, never again talk

of perpendicular vectors.

We can extend the concept of orthogonality to vector subspaces as

well. Two subspaces are orthogonal to each other when every vector

in one subspace is perpendicular to every vector in the other one.
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Here are two subspaces: The xy plane and the yz plane in R3. Are

they orthogonal subspaces? From the geometric shapes, they look

like two planes at right angles to each other. But is every vector in

the xy subspace orthogonal to those in the yz subspace? Clearly not,

because we have a whole line of vectors along the y axis that are in

both subspaces. They are clearly not orthogonal to themselves. Any

two subspaces with nontrivial (meaning more than the zero vector, 0)

intersection, therefore, cannot be orthogonal to each other. Note that

all subspaces have to contain the zero vector.

To look at a positive example, the xy plane and the z axis can be

considered two subspaces. They are indeed orthogonal to each other.

Every vector on the xy plane is orthogonal to every vector along the

z axis. Here is a generalized proof using symbolic vectors.

1. A general vector on the xy plane and a general vector along the

z axis have the form:

x =





x
y
0



 z =





0
0
z





2. The dot product between any vector on the xy plane and any

vector along the z axis is therefore:

x · z = xTz = 0 =⇒ x § z

3. Therefore, by the definition of orthogonal subspaces, xy plane

§ z axis.

Both perpendicularity and orthogonality are indicated by the same

symbol §.

6.3 Basis and Dimensions

6.3.1 Basis

Definition: A basis of a vector space or a vector subspace is a set of

vectors that meet two criteria:

1. That they span the vector space or the vector subspace.

2. That they are linearly independent.
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Notational Abuse

For our purposes in Linear Algebra, R2
,R3

,Rn etc. are vector spaces, which means they
are collections or sets of all possible vectors of the right dimensions. R2, for instance, is
a collection of all vectors of the kind

x =

[

x1

x2

]

with x1, x2 ∈ R

and nothing else.

However, as we saw, R2 also is a coordinate space—the normal and familiar two­
dimensional plane where we have points with (x, y) coordinates. Because of such
familiarity, we may switch lightly between the vector space that is R2 and the coordinate
space that is R2. We did it, for instance, when speaking of the span of a single vector
which is a line. In a vector space, there is no line, there are no points, only vectors.

Similarly when we spoke of vector subspaces, we spoke of the xy plane in R3 without
really distinguishing it from the vector space R3.

Since the vectors in R2 or R3, as we described them so far, all have components (or
elements) that are identical to the coordinates of the points in the coordinate space, this
abuse of notation goes unnoticed. Soon, we will see that the coordinates are artifacts of
the basis that we choose. It just so happens that the most natural and convenient basis
vectors are indeed the ones that will give coordinates as components.

Ultimately, however, it may be a difference without a distinction, but it is still good to
know when we are guilty of notational abuse so that we may be careful to avoid mistakes
arising from it.

The vectors in the basis are called basis vectors, obviously. As we

can see, the concept of basis builds on the related concepts of linear

combinations and spans of vectors. We can define basis in a variety of

ways. Here is another definition: A basis of a vector space or vector

subspace is the minimum set of vectors that span it. Yet another

one: A set of vectors in a vector space (or subspace) is called a basis

if every element in it can be written as a unique and finite linear

combination of them. All these definitions are indeed equivalent.

Illustrating it with a couple of examples and counterexamples:

• In Figure 6.1 illustrating linear combinations, we have two

vectors and linear combinations like z:

x1 =

[

1
2

]

and x2 =

[

3
1

]

Test vector: z ∈ R2 =

[

5
1

]

x1 and x2 span all of R2 and are linearly independent. There­

fore they form a basis for the vector space R2. Given any



118 Vector Spaces, Basis and Dimensions

vector z ∈ R2, we can find unique scalars s1 and s2 such that

z = s1x1 + s2x2.

• In Figure 6.2, we have two candidate basis vectors x1 and x2:

x1 =

[

1.5
0.5

]

and x2 =

[

3
1

]

Test vector: z ∈ R2 =

[

5
1

]

x1 andx2 do not span all ofR2 and are not linearly independent.

Therefore they are not a basis for the vector space R2. Given

our test vector z, we are not able to find scalars s1 and s2 such

that z = s1x1 + s2x2.

• However, considering the subspace indicated by the line in the

same Figure 6.2, are the two vectors in the previous example a

basis? The vectors x1 and x2 do span this subspace, but they

are still not a basis because they are not linearly independent.

For this reason, a new vector z2, which is in this subspace, can

be expressed as an infinite number of linear combinations of

x1 and x2.

• The reason why the two vectors did not form a basis for the

subspace in the previous example was that we had too many

vectors: for a subspace formed as a span of one vector (which

is a line of vectors), we need only one vector in the basis. Simi­

larly, for a subspace that looks like a plane (span of two vectors)

as in Figure 6.4, we need exactly two vectors in the basis. If

we had a third vector, it is necessarily a linear combination of

the other two that are already in the basis, and is therefore not

linearly independent.

6.3.2 Dimension

Definition: The dimension of a vector space or subspace is the number

of vectors in its basis. Or, in fancier language, the dimension is the

cardinality of any basis of the space or subspace.

Note that a vector space or vector subspace (which we may as well

start calling spaces and subspaces, dropping the vector part, now that

we know them well enough) may have many different bases, but all

of them will have the same cardinality. The dimension of a space or

a subspace is an immutable property.
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Earlier, we spoke of the orthogonal subspaces. We can restate the

orthogonality in terms of their bases: Two subspaces are orthogonal

to each other if all the basis vectors of one are orthogonal to all the

basis vectors of the other.

In R3, we spoke of the xy plane as a subspace being orthogonal

to the z axis (taking the liberty to mix vector and coordinate spaces).

The dimension of the first space is 2 and the second one is 1, adding

up to the dimension of the containing space R3. We saw that the xy
plane and the yz plane do not form orthogonal subspaces, and one

reason is that their dimensions add up to 4, which is more than the

dimension of R3.

In R4, however, we will be able to find two­dimensional subspaces

that are orthogonal to each other. Remember that subspaces cannot

have nontrivial (nonzero) intersections. Therefore, we can have two

planes intersecting at a point in four dimensions!

6.3.3 Orthogonal Complements

Definition: If we have a subspace S ¢ Rn of dimension r, then its

orthogonal complement S§ is the collection of all vectors x ∈ Rn

that are orthogonal to all vectors in S .

S§ =
{

x | xTy = 0 ∀ y ∈ S
}

As a consequence, the dimension of S§ = n − r so that the dimen­

sions of the subspace and its orthogonal complement add up to the

dimension of the containing space.

In the earlier example of orthogonal subspaces, thexy plane and the

z axis (in the coordinate space R3) are, in fact, more than orthogonal

to each other. They are orthogonal complements, which means there

are no other dimensions left in the space beyond what is accounted

for by these two. To look at a counter example, the x and z axes

define orthogonal subspaces, but not orthogonal complements.

Keep in mind that although all the dimensions are accounted for

when we think of the orthogonal subspaces (such as the xy plane and

the z axis in R3), there are still plenty of vectors not in either. In fact,

most vectors in R3 are not on the xy plane or the z axis; they are

linear combinations of the ones in these to subspaces.



120 Vector Spaces, Basis and Dimensions

6.4 Geometry of Linear Equations

Earlier, we listed a set of equations in Table 4.1 and visualized some

of them in Figure 4.1, as part of algebraic view of solving equa­

tions. Our linear equations formed lines in two­dimensional xy
planes (which are coordinate spaces, not vector spaces, underscoring

the need for care in distinguishing between them as described in the

box on “Notational Abuse”). Now we want to look at the equations

again as vectors in some vector space, where we present the geometry

in a completely different way.

Looking at the system of linear equations Ax = b one row at a

time, as an equation making a shape in the coordinate space is the

row picture. Our equations in Figure 4.1 have two variables each,

and the row picture produces visualizations in the coordinate space

of R2. In general, for A ∈ Rm×n, the row picture works in Rn,

n being the number of variables. Our new way of looking at the

equations, which we will call the column picture, will mean that we

are working in Rm, of dimension the same as the number of rows in

A, or, equivalently, the number of equations in the system. In our

examples in Figures 4.1 and 6.5 to 6.7, if the row picture looks simpler

than the column picture, it is only because we have two variables,

and potentially more than two equations. As the coefficient matrix A

becomes large, both pictures become equally challenging to visualize,

but the column view gives us deeper insights.

In Figure 6.5, we have our favorite system of two equations, this

time shown as a linear combination of vectors that form the columns

of the coefficient matrix A. Here is the system:

x+ y = 5

x− y = 1
Ax = b A =

[

1 1
1 −1

]

, b =

[

5
1

]

By the column picture of matrix multiplication, we know that the

product Ax is a linear combination of the columns of A, taken with

the scaling factors in x, which are x and y. The system of equations

Ax = b says that the solution is the right values for the scalars in

the linear combination of columns of A that will give is b. How we

find these right values as depicted in Figure 6.5. Note that we had to

relabel the axes (in Figures 6.5 to 6.7) as Directions 1 and 2 because

they are indicators in a vector space now, not in the coordinate space.

In particular, the x and y in our equations have nothing to do with
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Fig. 6.5 Two linear equations on two unknowns with a unique solution. The scalars for

the column vectors of A to produce b as linear combinations are the solution to the system

of equations. Note that the length of a′

i
is signed (as indicated by±): It is positive if a′

i
is

in the same direction ai, negative otherwise.

these directions, once again highlighting the need for care described

in the box above on notational abuse.

To convince ourselves that this system does have a solution in this

case, let’s outline, as a series of steps, or an algorithm of sorts, how

we can get to the right values for the scalars1 referring to Figure 6.5:

1. Draw a line parallel to the second blue vector (the second

column of A, a2), going through the tip of the green b vector.

It is shown in blue as a thin dashed line.

2. Scale the first red vector (the first column ofA, a1) to reach this

line. The scaling required tells us what the scalar should be.

For our equations, the scalar for a1 is x = 3 in b = xa1+ya2.

3. Similarly, draw the red dashed line parallel toa1, going through

the tip of the green b vector.

1In listing these steps, we break our own rule about notational abuse: We talk about drawing
lines in the vector space, which we cannot do. A vector space contains only vectors; it does
not contain lines. It is coordinate spaces that contain lines. This predicament of ours shows
the difficulty in staying absolutely rigorous about concepts. Perhaps pure mathematical rigor
for its own sake is not essential, especially for an applied field like computer science.
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4. Scale a2 to reach this line, which gives us the scalar y = 2 in

b = xa1 + ya2.

Following the steps listed above, we can see that the solution is the

scalars needed for a1 and a2, giving us (x, y) = (3, 2). Although

we presented our steps above as an “algorithm,” we should point

out that it is never used as a method for solving the equations. It is

an algorithm only for mentally constructing the requisite scalars for

the right linear combination, illustrating that it is possible to do so,

and that the scalars are unique in this case of linear equations with a

unique solution.
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Fig. 6.6 Two inconsistent linear equations on two unknowns with no solution. All linear

combination of the column vectors of A fall on the purple line, and the right hand side

does not. Therefore, b is not in the span of a1 and a2. Hence no solution. Note that we

have drawn the red and blue vectors slightly offset from each other for visibility; they are

supposed to be on top of each other.

Let’s now move on to the case where we have two linear equations

that are not consistent with each other: x+ y = 5 and x+ y = 1. In

Figure 4.1, we saw that they were parallel lines, which would never

meet. What do they look like in our advanced geometric view in the

vector space? The column vectors of the coefficient matrix are now

identical. As we now know, all possible linear combinations of the

two vectors a1 and a2 fall in a subspace that is a line defined by the

direction of either of them. Their span, to use the technical term, is

only a subspace. The green vector b that we would like to create is
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not along this line, which means no matter what scalars we try, we

will never be able to get b out of a1 and a2. The system has no

solutions.

If we try the steps of our little construction algorithm above, we

see that while we can draw a line parallel to a2 going through the tip

of b, there is scaling factor (other than∞, to be absolutely rigorous)

that will take a1 to this line.
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Fig. 6.7 Three linear equations on two unknowns with no solution. Here, a1 and a2 are

not collinear, but span the plane of the page. The right hand side, b, has a component in the

third direction, perpendicular to the page coming toward us, indicated only by the shadow

that b casts.

In Figure 6.7, we have three equations, with the third one incon­

sistent with the first two. The geometric view is in three dimensions,

as opposed to the algebraic visualization of the equations, which still

stays in two dimensions because of the number of variables. In other

words, the geometric view is based on the column vectors of A,

which have as many elements as equations, or number of rows of A.

The algebraic view is based on the number of unknowns, which is

the same as the number of columns of A.

The fact that the vector space now has three directions makes it

harder for us to visualize it. We have simplified it: First, we reduced

the third equation to a simpler form. Secondly, we indicate the third

direction (assumed to be roughly perpendicular to the page, coming
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toward us) only by the shadows that the vector and the dashed lines

would cast if we were to shine light on them from above the page.

Here are the equations, the columns of A and the RHS:

x+ y = 5

x− y = 1

x+ y = 6 (reduced to 0 = 1)

a1





1
1
0



 ,a2





1
−1
0



 b =





5
1
1





Running our construction algorithm on this system:

1. Drawing a line parallel to a2 (blue vector), going through the

tip of the green b, we get the thin dashed line in blue. This

line is one unit above the plane of the page (because the third

component of b is one).

2. Trying to scale the first red vector (a1) to reach this blue dashed

line, we fail because the scaled versions go under the blue line.

3. Similarly, we fail trying to scale the blue a2 as well, for the

same reason. We cannot find x and y such that b = xa1+ya2,

because of the pesky, nonzero third component in b.

4. However, we can see that the shadows of these red and blue

dashed lines (shown in grey) on the plane of the page do meet

at the tip of the shadow of b. Think of these shadows as

projections and we have a teaser for a future topic.

In Figure 6.7, we took a coefficient matrix such that the third

components of its column vectors were zero so that we could visualize

the system relatively easily: Most of the action was taking place on

the xy­plane. In a general case of three equations on two unknowns,

even when we have nonzero third components, the two column vectors

still make a plane as their span. If the RHS vector is in the span of

the two vectors, we get a unique solution. If not, the equations are

inconsistent and we get no solution.

The geometric view of Linear Algebra, much like the algebraic

view, concerns itself with the solvability conditions, the characteris­

tics of the solutions etc., but from the geometry of the vector spaces

associated with the coefficient matrix (as opposed to row­reduction

type of operations in the algebraic view). As we saw in this chapter,

and as we will appreciate even more in later chapters, the backdrop

of the geometric view is the column picture of matrix multiplication.
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7
Change of Basis,

Orthogonality and
Gram­Schmidt

Mathematics takes us still further from what is human,

into the region of absolute necessity, to which not only the

world, but every possible world, must conform.

—Bertrand Russell

Right from the start of this book, we wrote vectors as column ma­

trices, with numbers arranged in a column. These numbers are the

components of the vector. Where do the components come from?

How do we get them? They are, in fact, the byproduct of the under­

lying basis that we did not hitherto talk much about. In this chapter,

we will expand on our understanding of bases, learn how the compo­

nents change when we change bases and explore some of the desirable

properties of basis vectors.
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7.1 Basis and Components

Basis of a space1 (such as Rn) is the minimal set of vectors that span

it. Minimal implies that the basis vectors are linearly independent. In

Rn, we can have a maximum of n linearly independent vectors ai ∈
Rn. Any set of such n linearly independent vectors would be a basis

for Rn. Once we have the basis, we can express any vector x ∈ Rn

as a unique linear combination of the basis vectors. The components

(or the coordinates) of x are the coefficients (or the scaling factors)

of this linear combination. Since the linear combination is unique, so

are the components.

7.1.1 Components of a Vector

Definition: For any x ∈ Rn, if the set of n vectors ai (which are

columns of a matrix A) form a basis for Rn and

x =
n

∑

i=1

xi|Aai (7.1)

then the n scalars xi|A ∈ R are the components (or coordinates) of x

in the basis ai, or in the basis matrix A.

If we were to place the basis vectors as the columns of a matrix,

we would get a square matrix A =
[

ai

]

∈ Rn×n. Now that we know

that we can place a set of basis vectors as the columns of a matrix,

we will start calling the matrices themselves the basis of spaces and

subspaces, which is why we call the components of x in the A basis

as xi|A in Eqn (7.1).

7.1.2 Identity Matrix as a Basis

To answer the question that we started this chapter with: We already

had components to our vectors. Where do they come from? These

components are, in fact, with reference to the identity matrix as the

basis . Let’s look at an example to illustrate it. Consider a vector

1From this chapter onward, when we say space or subspace, we mean a vector space or a
vector subspace.
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x ∈ R2.

x =

[

2
3

]

= Ix =

[

1 0
0 1

] [

2
3

]

= 2

[

1
0

]

+ 3

[

0
1

]

= 2q1 + 3q2

where we called the basis vectors q1 and q2. Some textbooks, espe­

cially the ones on physics, may call the unit vectors î and ĵ, so that

x = 2̂i+3ĵ. In either case, the components of the vector are 2 in the

first direction and 3 in the second one. Clearly, this example of how

a two­dimensional vector gets its components from an I2 extends to

higher dimensions as well. For x ∈ Rn, In is the basis that gives it

the components.

Identity matrices are pretty much the perfect basis we could ask for.

First of all, the column vectors of I all have their norm equal to one,

which is why we call them unit vectors in the previous paragraph.

Secondly, each column is orthogonal to the rest. And lastly, the

matrix is diagonal, which says that the dimension of the space of

which it is a basis is the sum of the diagonal elements. This sum is

also called the trace (usually written as Tr(A) or trace(A) or Tr. A)

of the matrix. Since it is an important concept in theoretical Linear

Algebra, let’s define it:

Trace

Definition: For any A =
[

aij
]

∈ Rn×n, its trace is defined as

trace(A) =
n

∑

i=1

aii

When we use the identity matrix as the basis (as we almost always

do), what we get as the components of vectors are, in fact, the coor­

dinates of the points where the tips of the vectors lie. For this reason,

the identity basis may also be referred to as the coordinate basis. The

components of a vector may be called coordinates. And a vector (as

we define and use it in Linear Algebra, as starting from the origin)

may be called a position vector to distinguish it from other vectors

(such as the electric or magnetic field strength, which may have a

specific value and direction at any point in the coordinate space).
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7.1.3 Orthogonal Basis

We sneaked in orthogonality earlier in the previous chapter, although

we were planning a fuller treatment of the topic here in this chapter.

Orthogonal vectors are the ones whose dot product is zero: x and

y are orthogonal if xTy = 0. If our basis vectors are orthogonal to

each other, then we have an orthogonal basis.

7.1.4 Orthonormal Basis

In addition to being orthogonal to each other, if our basis vectors are

all of unit length, then we have an orthonormal basis. The identity

matrix as a basis is a nice orthonormal basis, but it is not the only

one. Before looking at some examples, let’s study orthonormal bases

in their generality.

Let’s call our orthonormal basis matrix Q = [qi] ∈ Rn×n, with

column vectors qi ∈ Rn. The fact that the columns qi form an

orthonormal basis for means two things: The dot product of any two

distinct columns is zero, and the norm of each column is one. Both

these characteristics can be stated compactly as:

qT

i qj =

{

1 i = j

0 i ̸= j
(7.2)

As a consequence, we get some interesting properties for the matrix

Q.

1. The inverse of an orthonormal matrix is its transpose:

Q−1 = QT =⇒ QTQ = QQT = I (7.3)

We can easily prove this by looking at the product QQT as

the dot products of the rows of Q with the columns of QT.

Because of Eqn (7.2) above, only the elements where the row

number is the same as the column number survive, giving us

the identity matrix.

2. An orthonormal matrix does not change the norm of a vector:

∥Qx∥ = ∥x∥ (7.4)
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Proof: Consider ∥Qx∥2:

∥Qx∥2 = (Qx)TQx = xTQTQx

= xTQ−1Qx = xTIx

= xTx = ∥x∥2

=⇒ ∥Qx∥ = ∥x∥

3. Orthonormal matrices have unit determinants: |Q| = ±1,

which follows conceptually from the fact that they do not

change the size of the vector it is multiplying with. But it

can be easily proven by the properties of determinants:

Q−1 = QT =⇒
∣

∣Q−1
∣

∣ =
∣

∣QT
∣

∣ = |Q| =⇒
1

|Q|
= |Q|

=⇒ |Q|2 = 1 =⇒ |Q| = ±1

Keep in mind that although we made a distinction between or­

thogonal and orthonormal matrices, most authors write the former to

mean the latter. We also will adapt this sloppy practice soon.

7.2 Change of Basis

One of the important applications of Linear Algebra uses the change

of basis: Going from one basis to another. We see this application

in multi­player video games where the underlying world is rendered

from the perspective each player. We also see it in the perspective

correction apps in our smart phones.

Let’s start with some examples as shown in Table 7.1 and drawn

in Figure 7.1. In the first row of the vector x has components 7 and

5 in the usual basis we are used to, which may be called identity or

coordinate basis. In the table, it is written as [x]I .

In the second row of Table 7.1, we are using the matrix A′ as the

basis. Notice that the basis vectors a′
1

and a′
2

are still in the same

direction as the corresponding unit vectors from the identity basis q1

and q2. But they have been scaled up. Looking at the components

of the same vector in this basis A′, as we see in [x]A′ , we see that

they are smaller than the coordinates: 7 → 2 and 5 → 2. What it

is saying is that since the basis vectors are bigger, we need to take
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Table 7.1 Examples of change of basis

Basis Basis Linear Vector
Matrix Vectors Combination Components

A = I =

[

1 0
0 1

]

q1 =

[

1
0

]

q2 =

[

0
1

]

x = 7q1 + 5q2 [x]
I
=

[

7
5

]

A′ =

[

3.5 0
0 2.5

]

a′

1 =

[

3.5
0

]

a′

2 =

[

0
2.5

]

x = 2a′

1 + 2a′

2 [x]
A′ =

[

2
2

]

A′′ =

[

2 1
1 1

]

a′′

1 =

[

2
1

]

a′′

2 =

[

1
1

]

x = 2a′′

1 + 3a′′

2 [x]
A′′ =

[

2
3

]

How the same vector x is represented in various bases. The notation of square brackets
around a vector with a matrix as subscript stands for the vector represented in the basis
of the matrix: [x]

A
is the representation of x using the columns of A as the basis

vectors.
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Fig. 7.1 Visualizing the change­of­basis examples listed in Table 7.1. The green vector

is represented in three different bases, giving vastly different values for its components.

only two in each direction to get to the tip of our vector x. When

the basis vectors become bigger, the components get smaller, which

should indicate to us that the change of basis probably has the inverse

of the basis matrix involved in some fashion.

In the third row of Table 7.1, things get really complicated. Now

we have the basis vectors in some random direction (not orthogonal

to each other) with some random size (pretty far from unity). The

first component now is 2 and the second 3, as described in Table 7.1

and illustrated in Figure 7.1.
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How do we compute the new components given the original vector

and the new basis vectors? In other words, how do we perform the

change of basis in a general way? Let’s call our original basis is

the coordinate basis In ∈ Rn×n and the new basis A ∈ Rn×n. The

column vectors of A = ai ∈ Rn are also specified in the identity

basis. Eqn (7.1) tells us how to arrive the components of x (which

are xi) in this basis. Remember, we denoted the representation of x

in A as [x]A. In order to find the components of x in the A basis,

we have to find the vector [x]A such that x = A[x]A, which is the

same as solving the system of linear equations x = A[x]A as shown

in Eqn (7.5) below. Since we know that A is a basis matrix, it is

square, full rank and is therefore invertible. We can, therefore, get

the components in the new basis A through matrix inversion:

x =
n

∑

i=1

xi|Aai =⇒ x = A[x]A =⇒ [x]A = A−1x (7.5)

Let’s now verify Eqn (7.5) using the most complicated example we

did, namely the third row of Table 7.1. Remembering the prescription

for the inverse of a 2× 2 matrix (swap the diagonal elements, switch

the sign of the off­diagonal elements and divide by the determinant),

we have:

The original vector in the coordinate basis: x =

[

7
5

]

The new basis: A =

[

2 1
1 1

]

=⇒ |A| = 1 and A−1 =

[

1 −1
−1 2

]

The vector in the new basis: [x]A = A−1x =

[

1 −1
−1 2

] [

7
5

]

=

[

2
3

]

Note that we have used the symbol A for the new basis rather than

A′′ as in Eqn (7.5). Comparing our [x]A with [x]A′′ in the Table 7.1,

we can satisfy ourselves that the matrix equation in Eqn (7.5) does

work.

7.2.1 Consequences of Basis Change

When we change the basis to A, what happens to vector dot products,

and therefore, to the norm of vector? Using the definition of dot

products way back in Eqn (2.11) and the change of basis in Eqn (7.5),
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we can write:

x · y = xTy = (A[x]A)
T
A[y]A = [x]TA

(

ATA
)

[y]A

If the dot product is to remain unchanged, we need x · y = xTy =
[x]TA[y]A, or ATA = I for the new basis A. What type of matrices

satisfy this condition? As we see in Eqn (7.3), orthogonal matrices do.

Therefore, preservation of the norm of the vector under basis change

also requires the basis matrix to be orthogonal. (Orthonormal, in fact,

but as promised, we will let it slide from now on.)

7.3 Basis of Subspaces

Whatever we said about bases and components for spaces also applies

to subspaces, but with one important and interesting difference. As

we know, subspaces live inside a bigger space. For example, we

can have a subspace of dimension r inside Rn with r < n. For

this subspace, we will need r basis vectors, each of which is a n­

dimensional vector: ai ∈ Rn. If we were to place these r vectors in

a matrix, we would get A ∈ Rn×r, not a square matrix, but a “tall”

one.

Remember, this subspace of dimension r is not Rr. In particular, a

two­dimensional subspace (a plane going through the origin) inside

R3 is not the same as R2. Let’s take an example, built on the third row

of Table 7.1 again, to illustrate it. Let’s take the two vectors in the

example, make them three­dimensional by adding a third component.

The subspace we are considering is the span of these two vectors,

which is a plane in the coordinate space R3: All linear combinations

of the two vectors lie on this plane. We will use the same two vectors

as the basis A and write our vector x (old, coordinate basis) as [x]A
(new basis for the subspace). We have:

A =





2 1
1 1
1 0



 x = 2a1 + 3a2 =





7
5
2



 =⇒ [x]A =

[

2
3

]

Note that our [x]A has only two components because the subspace

has a dimension of two. Why is that? Although all the vectors in

the subspace are in R3, they are all linear combinations of the two

column vectors of A. The two scaling factors required in taking the
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linear combination of the basis vectors are the two components of the

vectors in this basis.

In the case of full spaces Rn, we had a formula in Eqn (7.5) to

compute [x]A, which had A−1 in it. For a subspace, however, what

we have is a “tall” matrix with more rows (m) than columns (r < m).

What is the equivalent of Eqn (7.5) in this case? Here’s where we

will use the left inverse as defined in Eqn (5.2). Note that A is a

tall matrix with full column rank because its r columns (being basis

vectors for a subspace) are linearly independent. ATA is a full­rank,

square matrix of size r × r, whose inverse figures in the left inverse.

As a reminder, here is how we defined it:

(

ATA
)−1 (

ATA
)

= I =⇒ A−1

left = (ATA)−1AT

Coming back to the change­of­basis problem, we get the compo­

nents in the new basis A following the same arguments used earlier

in deriving Eqn (7.5):

A[x]A = x =⇒ [x]A = A−1

Left x = (ATA)−1ATx (7.6)

Once again, let’s verify the veracity of this prescription using our

example.

x =





7
5
2



 A =





2 1
1 1
1 0



 =⇒ AT =

[

2 1 1
1 1 0

]

and ATA =

[

6 3
3 2

]

∣

∣ATA
∣

∣ = 3 and
(

ATA
)

−1

=
1

3

[

2 −3
−3 6

]

=

[

2

3
−1

−1 2

]

(ATA)−1AT = A
−1

Left =

[

2

3
−1

−1 2

] [

2 1 1
1 1 0

]

=

[

1

3
− 1

3

2

3

0 1 −1

]

[x]
A

= A
−1

Left x =

[

1

3
− 1

3

2

3

0 1 −1

]





7
5
2



 =

[

2
3

]

It is a tedious calculation, but it works out to be exactly the scalars

in the linear combination we started from: x = 2a1 +3a2. Happily,

we will never have to do such calculations by hand; we have SageMath

to do it for us. For a deeper understanding of this left inverse, we

will have to wait for the projection operation coming up two chapters

down the line, but based on what we will discuss next.
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7.4 Orthogonality

7.4.1 Orthogonal Vectors

We came across orthogonal vectors in a couple of places earlier in

this book. If we imagine vectors as line segments in coordinate

spaces with arrows at their tips, we can say that orthogonal vectors

are simply perpendicular vectors. We are clearly more sophisticated

than that by now, and our vector spaces do not have lines and arrows.

Orthogonal vectors are, therefore, those vectors that have their inner

(or dot) product equal to zero.

Orthogonal Vectors

Definition: Two vectors, x,y ∈ Rn are orthogonal to each other if

and only if

xTy = yTx = 0

Note that the vectors in the inner product can commute. Note also

that the less sophisticated definition of the inner product (namely

x · y = ∥x∥∥y∥ cos θ) shows that the inner (or dot) product is zero

when x and y are perpendicular to each other because the angle θ
between them is π

2
and cos θ = 0.

We still stay away from the definition of the inner product using the

angle because, by now, we know that the machinery of Linear Allegra

may be applied to vector­like objects where we may not be able to

talk about directions and angles. For example, in Fourier transforms

or the wave functions in quantum mechanics, vectors are functions

with the inner product defined with no reference any kind of angles.

We can still have orthogonal “vectors” in such vector spaces when the

inner product is zero. Clearly, we cannot have perpendicular vectors

without abusing the notion and notation a bit too much for our (or at

least, the author’s) liking.

Earlier, in Eqn (2.5), we defined the Euclidean norm of a vector

∥a∥:

∥a∥2 = aTa

Using this definition, we can prove that the inner product of orthog­

onal vectors has to be zero, albeit not completely devoid of the lack

of sophistication associated with perpendicularity.

If we have a § b, then we know that ∥a∥and ∥b∥ make the sides

of a right­angled triangle (which is where the pesky perpendicularity
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rears its ugly head again) whose hypotenuse is of length ∥a + b∥.

Then, by the Pythagorean theorem, we can write:

∥a∥2 + ∥b∥2 = ∥a+ b∥2

aTa+ bTb = (a+ b)T (a+ b)

=
(

aT + bT
)

(a+ b)

= aTa+ bTb+ bTa+ aTb

=⇒ 0 = bTa+ aTb

=⇒ bTa = aTb = 0 since bTa = aTb

7.4.2 Orthogonalization

Given that the orthonormal (we may as well call it orthogonal because

everybody does it) basis is the best possible basis we can ever hope

to have, we may want to have an algorithm to make any matrix

A ∈ Rn×n orthogonal. An orthogonal matrix is the one in which

the columns are normalized and orthogonal to one another. In other

words, it is matrix that could be a basis matrix as described in §7.1.4

with the associated properties. And orthogonalization is the process

or algorithm that can make a square matrix orthogonal.

The first question we may want to ask ourselves is why we would

want to do this; why orthogonalize? We know that a perfect basis

for Rn×n is In, the identity matrix. Why not just use it? We have

two reasons for doing it. The first one is pedagogical: We get

to see how projection works in a general way, which we will use

later. The second reason is a practical one from a computer science

perspective: Certain numerical algorithms use the decomposition that

results from the orthogonalization process. Another reason, again

from our neck of the woods, is that when we know that a matrix

Q is orthonormal, we know that the transformation it performs on

a vector is numerically stable: Qnx does not suffer from overflow

or underflow errors because the norm of x is not modified by the

multiplication with Q.

7.4.3 Projection

Earlier, in Chapter 2, we looked at vector dot product as projection

using the cosine of the angle between them, in Figure 2.5. To remind
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ourselves, if we have two vectors a1 and a2 with an angle θ between

them, the projection of a2 onto a1 has the length ∥a2∥ cos θ. From

the definition of the dot product using the angle, we can write:

∥a2∥ cos θ =
a1 · a2

∥a1∥
=

a1

∥a1∥
· a2

To move to a totally matrix notation, we can use the matrix definition

of dot products, a1 ·a2 = aT

1
a2 = aT

2
a1, which changes the formula

above to:

∥a2∥ cos θ =
aT

1

∥a1∥
a2 = aT

2

a1

∥a1∥

This formula gives us the length of the projection, which we call x
in Figure 7.2. For our purposes, we want a vector as the projection,

which would be a vector in the direction of a1, with its norm equal

to the length of the projection x. Let’s call this projection vector a2∥.

The direction of a1 is specified by the unit vector q1:

q1 =
a1

∥a1∥

Putting it all together, we write:

a2∥ =
(

aT

2
q1

)

q1 (7.7)

This form of the projection is what we will use in the Gram­Schmidt

process coming up in the next section.

However, we want to go a bit further and with this Eqn (7.7) and

develop what we will call a projection matrix. Knowing the definition

of the norm of a vector:

∥a1∥
2 = aT

1
a1

we can write the projection in a form that we will use later, when we

start projecting vectors onto subspaces rather than other vectors. The

derivation of this form of projection is shown in Figure 7.2, which

we will repeat as a recasting of Eqn (7.7) merely to get used to the

vector/matrix manipulations, if nothing else.

Rewriting Eqn (7.7) using definitions of the norm (∥a1∥) and the

direction (q1):

a2∥ = q1

(

qT

1
a2

)

=
a1

∥a1∥

(

aT

1

∥a1∥
a2

)

= a1

(

aT

1
a2

∥a1∥2

)

=

(

a1a
T

1

a1
Ta1

)

a2

(7.8)
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Fig. 7.2 Dot product between two vectors a1,a2 ∈ Rn, shown on the plane defined by

the two vectors.

In the relatively complicated manipulations in Eqn (7.8), we have a

couple of observations to write down:

• The entities in the parentheses in all but the last RHS are scalars.

If we were to call it, say s, it commutes with matrix (and vector)

multiplication:

sa1a2 = a1sa2 = a1a2s

• In the first RHS, we have the projection of a2 equal to a scalar

times the direction of a1, which makes sense.

• This pattern repeats itself in all the RHS until the very last one:

The projection vector is a1 scaled.

• In the last and final RHS (where we used the associativity of

matrix multiplication to put the parenthesis where we wanted),

the entity multiplying a2 is a matrix: It is a1a
T

1
∈ Rn×n

multiplied by a scalar
(

aT

1
a1

)−1
.

• We can think of this scaled matrix as an operator, which, when

applied to any vector a2, gives its projection to a1

We will call the scaled matrix P , the projection matrix. Let’s write it

down once more as the definition of the projection matrix, which we
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will revisit in a couple of chapters.

P = a1

(

aT

1
a1

)−1
aT

1
(7.9)

7.5 Gram­Schmidt Process

The Gram­Schmidt process is an algorithm to turn a square, invertible

matrix into an orthonormal one through a series of steps. These steps

are, in fact, elementary column operations, akin to the row operations

we performed in Gaussian and Gauss­Jordan eliminations.

At the end of the Gram­Schmidt process, starting from A, we will

get a matrix Q that is a rotated version of the identity matrix I with

some of the rows permuted. As we will see, the algorithm keeps the

direction of the first column vector and the order of the rest fixed. In

other words, if the second column vector of A is to the “right” of the

first one, we will have the second column of Q also to the right of

the first one. (To be more precise, by “right,” we mean that we have

to turn clockwise to go from the first column to the second.)

7.5.1 The Algorithm

Since our objective is to get an orthonormal basis matrix, we will

normalize each column vector and ensure that it is orthogonal to the

rest through this iterative process, starting from the first column. In

order to describe the algorithm (which is what a step­by­step process

is), let’s set the stage by specifying our symbols. We will start from

a square matrix A and end up with another square matrix Q.

A =
[

ai

]

,Q =
[

qi

]

∈ Rn×n,A
G­S
−−→ Q =⇒ qT

i qj =

{

0 i ̸= j

1 i = j

Here are the steps in the Gram­Schmidt process, as illustrated in

Figure 7.3:

1. Take the first column of A and normalize it to get the first

column of Q.

q1 =
a1

∥a1∥

2. Use q1 to get q2 (or qj with j = 2) using the steps below:
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Fig. 7.3 Illustration of the Gram­Schmidt process running on a matrix A. The first

column (red) is normalized to get the unit vector q1, which is then used to create q2 from

the second (blue) column. Both q1 and q2 are used in projecting the third (green) column

and computing q3.

(a) Take the second column of A and project it onto q1 to get

the part of a2 parallel to it, using Eqn (7.7).

a2∥ =
(

aT

2
q1

)

q1

(b) Subtract a2∥ from a2 to get the perpendicular part.

a2§ = a2 − a2∥ = a2 −
(

aT

2
q1

)

q1

(c) Normalize a2§ to get the second column of Q,

q2 =
a2§

∥a2§∥

3. Now get qj using the j − 1 vector’s normalized so far, qi,
1 f i < j, following the steps below:

(a) Take aj , the next column of A, project it successively

to qi to get the part of aj parallel to it, using Eqn (7.7).

aj∥i =
(

aT

j qi

)

qi

(b) Subtract all parallel parts aj∥i from aj to get the part

perpendicular to all qi.

aj§ = aj −

j−1
∑

i=1

aj∥i = aj −

j−1
∑

i=1

(

aT

j qi

)

qi
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(c) Normalize aj§ to get the next column of Q, qj .

qj =
aj§

∥aj§∥

4. Iterate until we run out of columns, which is when j = n.

Note that step 2 in the algorithm above is actually the same as step 3,

with j = 2, but we chose to spell it out in order to make the process

clear. In fact, even the first step can be thought of as the same as the

third step, making it easy to list the steps as an algorithm, and indeed

to write code based on them.

7.5.2 Numerical Considerations

When we look at the steps of the Gram­Schmidt process, we see

that we are normalizing a vector, using it to compute the next one,

normalizing it and working our way through the whole matrix A. As

we know, floating point operations on a computer have an inherent

precision, and the first step necessarily incurs a certain error. Since it

is being used in the next step, the errors accumulate. For this reason,

the process may be numerically unstable.

The modified version of the algorithm mitigates this problem by

breaking down the summation in the step 3(b) above iteratively as:

a
(1)
j§ = aj −

(

aT

j q1

)

q1

a
(i+1)
j§ = a

(i)
j§ −

(

a
(i)T
j§ qi

)

qi 1 < i < j − 1

aj§ = a
(j+1)
j§

(7.10)

In other words, instead of projectingaj onto all the currently available

orthonormal vectors qi, 1 f i < j and subtracting the sum in step 3(b),

we project it onto q1 first, subtract it from aj to get the perpendicular

part a
(1)
j§. Then instead of projecting aj onto q1 again, we project

a
(1)
j§ instead, thereby disrupting the accumulation of rounding errors.

7.5.3 QR Decomposition

Since the Gram­Schmidt algorithm is about taking linear combina­

tions of the columns of the matrix, it should be possible to write it as
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a matrix multiplication on the right.

A,Q ∈ Rn×n,A
G­S
−−→ Q =⇒ AX = Q,X ∈ Rn×n

Furthermore, since q1 is a scaled version of a1, the first column

of X has only one nonzero element, x11. In general, qi is a linear

combination of allaj , 1 f j f i. Therefore,X is an upper triangular

matrix. We are more interested in the inverse of this matrix, which

we will call R. It is also an upper triangular matrix: a fact that

can be appreciated by noticing that ai is a linear combination of all

qj , 1 f j f i. It is also a fact that can be proven in general, and is

left as an exercise.

With these notations, we can write:

AX = Q =⇒ A = QR =⇒ R = Q−1A = QTA

Where we used the fact that Q is orthogonal, and therefore its inverse

exists, and Q−1 = QT.

As we can see, the Gram­Schmidt algorithm leads to a decomposi­

tion of a square, full­rank matrix into an orthogonal matrix Q and an

upper triangular matrix R, which is called the QR decomposition,

naturally.

7.6 Rotation Matrices

Thinking of matrix multiplication of the typeAx = b as a transforma­

tion A : x 7→ b, we can appreciate that Q has to be a transformation

that either rotates or reflects a vector, or shuffles its elements.

An important class of orthonormal matrices are rotation matrices.

They are orthonormal matrices because they do not change the norm

of the vector being rotated. As shown in Figure 7.4, we can easily

derive the rotation matrix in Qθ in R2. Note that the inverse of the

rotation matrix would be a matrix that would rotate in the opposite

direction: Q−1

θ should be Q−θ. And, being an orthonormal matrix,

it should also be the same as Qθ
T.

Qθ =

[

cos θ − sin θ
sin θ cos θ

]

|Qθ| = cos2 θ + sin2 θ = 1

Q−1

θ = Q−θ =

[

cos(−θ) − sin(−θ)
sin(−θ) cos(−θ)

]

=

[

cos θ sin θ
− sin θ cos θ

]

= QT

θ
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Fig. 7.4 The rotation matrix in R2 can be written down by looking at where the unit

vectors go under a rotation through a specified angle.

Rotation in R3 is defined by three angles, the pitch, roll and yaw,

as they are known in flying. The matrix can actually be written as

the product of three independent rotations, but it is probably of not

much interest in computer science, except, perhaps for developing

flight simulators.
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Linearity in Relativity

We talked about rotation matrices. In R3, for instance, if we have a vector x that
gets rotated by a yaw (ψ), pitch (θ) and roll (φ) and ends up as x′, we have a linear
transformation: x′ = R(ψ, θ, φ)x. If all the rotation angles are zero (ψ = θ = φ = 0),
then clearly R = I3. Since the physical world we live in is R3, these vectors (x and
x′) represent the position of a point and how its coordinates change in a rotated frame.
These are the so­called position vectors.

Then Einstein came along and said we should be thinking of events rather that posi­
tions. An event takes place at a position and at a time, which would be represented by

a four­dimensional vector

[

x
t

]

. Then Einstein proceeded to write a "rotation" between

two events as something like:

[

x′

t′

]

= L

[

x
t

]

Here, if we think of time as universal

(meaning, independent of the position or the state of motion of an observer), then t′ = t,
which says the fourth­row, fourth­column element of this matrix L is 1, the rest being
identical to those in R. And if the rotation angles are all zero, L = I4.

So far so good. But what comes next is the jaw­dropping, god­level genius of Albert
Einstein when he said the matrix L depends on the speed v of the observer. In other
words, it is a function of the rotation angles as well as the speed, L(ψ, θ, φ, v). This is
the so­called Lorentz transformation. If we assume there is no rotation, and the motion
is along the z axis, then we get the Lorentz matrix as:

L =







1 0 0 0
0 1 0 0
0 0 γ −γβ
0 0 −γβ γ







What γ and β are is not so important for our discussion here, but β = v
c

, the velocity as

a fraction of the speed of light and γ = 1√
1−β2

, the Lorentz factor. What is important to

note is that the z coordinate (which is the length along the direction of motion) and time
are interconnected, which leads to length contraction and time dilation in such a way as
to keep the speed of light a constant. How this transformation is derived and what the
physical reasons behind them form the initial part of the paper that literally changed all
of physics and our understanding of the universe forever.

Once the transformation is written as a linear transformation, Einstein had all of linear
algebra standing behind his equations. There was never going to be a mathematical
inconsistency in all the crazily counter­intuitive predications of special relativity. But
there is this crucial assumption of linearity, which was introduced on page six, third line
in this English translation of the original paper: "In the first place it is clear that the
equations must be linear on account of the properties of homogeneity which we attribute
to space and time."

Although I never explicitly stated it this way so far, I have taken issue with this
assumption of linearity, which formed the basis of my first book, The Unreal Universe,
with its key finding described in this short video.

https://archive.org/details/einstein-1905-relativity
https://archive.org/details/einstein-1905-relativity
https://archive.org/details/einstein-1905-relativity
https://TheUnrealUniverse.com
https://manoj.sg/uu
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Importance of Linearity in Relativity á la ChatGPT

One of the foundational assumptions in special relativity is the linearity of the trans­
formations between inertial reference frames. This assumption plays a crucial role in
deriving the Lorentz transformations and establishing the consistency of the theory. Here,
we explore why this assumption is both natural and necessary.

In special relativity, inertial frames are related by transformations that preserve the
uniformity of space and time. If xµ = (t, x, y, z) represents coordinates in one frame
and x′µ = (t′, x′, y′, z′) in another, the transformation x′µ = f(xµ) must:

1. Preserve the Principle of Relativity: All inertial frames are equivalent, meaning
the laws of physics are the same in each.

2. Preserve Homogeneity and Isotropy: Space and time are uniform and direc­
tionally invariant.

These conditions imply that the transformation must act uniformly on all points in
spacetime. This uniformity necessitates linearity, as nonlinear transformations would
introduce position­dependent effects, violating homogeneity.

A linear transformation can be written as:

x
′µ = Λµ

νx
ν
,

where Λµ
ν is a constant matrix. Linearity ensures that the spacetime interval:

s
2 = −c2t2 + x

2 + y
2 + z

2

is preserved up to a constant factor, ensuring consistency with the invariant speed of light
c.

The linearity assumption simplifies the interplay between space and time while en­
suring causality and consistency with experimental observations. Without linearity,
transformations would introduce arbitrary distortions, undermining the predictive power
of the theory.

In summary, the assumption of linearity in special relativity arises naturally from the
symmetry and uniformity of spacetime, enabling the elegant derivation of the Lorentz
transformations and the unification of space and time.



8
Review and Recap

The story so far:

In the beginning the Universe was created.

This has made a lot of people very angry and been widely

regarded as a bad move.

—Douglas Adams

8.1 A Generalization

We have come about halfway in our Linear­Algebra journey. The

way we discussed our topics in this book was explicitly geared toward

computer science. Specifically, our vectors and matrices were over

the field of real numbers, R. We could generalize it to any field, F or

K, and almost all of our statements and discussions will still stand.

However, for computer scientists, the most appropriate field to work

with, we believe, is R.

We also presented certain definitions, such as the pivotal one of

vector space, incrementally: We defined vectors first, their operations

and the properties thereof, and finally said a vector space are merely
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a complete collection or closed set of all possible vectors of the same

dimension.

We may find some value in taking a step back and defining the

concept of vector space in a general and formal way, which starts

from scratch and lists all the properties and operations we are looking

for. Here is such a definition, which also provides a good summary

of our initial, introductory chapters.

Vector Space

Definition: A vector space over a field of K is a set of elements

that have two operations defined on them. We will call the elements

“vectors” and use the symbol S for the set.

1. Addition (denoted by +): For any two vectors, x,y ∈ S ,

addition assigns a third (not necessarily distinct) vector (called

the sum) in z ∈ S . We will write z = x+ y.

2. Scalar Multiplication: For an element s ∈ K (which we will

call a scalar) and a vector x ∈ S , scalar multiplication assigns

a new (not necessarily distinct) vector z ∈ S such that z = sx.

These two operations have to satisfy the properties listed below:

Commutativity: Addition should respect associativity, which means

the order in which the vectors appear in the operation does not

matter. For any two vectors x1,x2 ∈ S ,

x1 + x2 = x2 + x1

We can make scalar multiplication also commutative by defin­

ing sx = xs.

Associativity: Both operations should respect associativity, which

means we can group and perform the operations in any order

we want. For any two scalars s1, s2 ∈ K and a vector x ∈ S ,

s1s2x = s1(s2x) = (s1s2)x

and for any three vectors x1,x2,x3 ∈ S ,

x1 + x2 + x3 = (x1 + x2) + x3 = x1 + (x2 + x3)

Distributivity: Scalar multiplication distributes over vector addition.

For any scalar s ∈ K and any two vectors x1,x2 ∈ S ,

s(x1 + x2) = sx1 + sx2
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and for any two scalars s1, s2 ∈ K and a vector x ∈ S ,

(s1 + s2)x = s1x+ s2x

Identity of Addition: The set S has an identity of addition (called

the zero vector) 0 ∈ S such that x+ 0 = 0+ x = x.

Additive Inverse: For every x ∈ S , the set S has an inverse of

addition−x such that x+(−x) = 0, the identity of addition.

Identity of Scalar Multiplication: The field K has a unit element,

1 (called the multiplicative identity) such that for every x ∈ S ,

1x = x1 = x.

If S is a set that satisfies all these conditions, then it is a vector space.

As we can see, we do not say anything about what the “vectors” are.

In particular, we are free to call our matrices by the name vectors also,

and consider a collection of matrices that satisfy these conditions a

vector space. What are such matrices? They are matrices of the same

dimensions, of which our vectors are examples.

Note that the existence of a third operation, vector­vector multipli­

cation (such as dot products, or matrix multiplication, more generally)

is not required for our set of vectors S to be considered a vector space.

8.2 Product Rules: Transposes and Inverses

The product rule of transposes and inverses is similar: When we

transpose (or invert) a product, we get the operations in the reverse

order on the factor matrices.

(AB)T = BTAT and (AB)−1 = B−1A−1

The product rule for transposes gives us two interesting symmetric

matrices from any odd matrix:

(ATA)
T

= AT(AT)T = ATA and (AAT)
T

= (AT)TAT = AAT

ATA is the Gram matrix. ATA, AAT and AT all have the same

rank as A. In particular, if A has full column rank, ATA is a full­

rank, square matrix. And if A has full row rank, AAT is a full­rank,

square matrix.
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Combining the invertibility of ATA and AAT with the product

rule for inverses, we can come up with left and right inverses.

(ATA)−1ATA = I =⇒ A
−1

Left = (ATA)−1AT

In writing the first part of the expression above, we assume that

ATA (the Gram matrix) is invertible, which meansA has full column

rank. Similarly, for full­row­rank matrix A has a right inverse:

AAT(AAT)−1 = I =⇒ A
−1

Reft = AT(AAT)−1

Keep in mind that A is not necessarily square, and does not,

therefore, have a double­sided inverse A−1. But the left inverse

can take the place of an inverse, as it did in Eqn (7.6).

While describing the Gram­Schmidt process, we wrote down the

projection operator in a special form in Eqn (7.8):

a2∥ = a1

(

aT

1
a1

)−1
aT

1
a2

Notice a similar pattern emerging? The projection of a2 onto a1 is

the left inverse of a1 = a−1

1 left ∈ R1×n multiplying a2 ∈ Rn on the

left, giving us a scalar (which then scales a1 to make the projection a

vector).

8.3 Column Picture of Matrix Multiplication

While describing matrix multiplication, we presented many different

ways of understanding it. All these different pictures are indeed

equivalent. First, we started with an element­wise definition. We

then saw that vectors, being matrices of single columns, obeyed the

same multiplication rules, and realized that vector dot product is a

matrix multiplication. We then redefined matrix multiplication as

dot products of the rows of the first matrix with the columns of the

second.

We also looked at the row and column pictures of matrix multiplica­

tion: Multiplication on the left is the same as the linear combinations

of the rows of the second matrix, and multiplication on the right is

the same as the linear combinations of the columns of the first. Of

all these different views of matrix multiplication, the column picture

is most useful one. Let’s look at it once more, and apply it to our
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understanding of some of the crucial and basic concepts of Linear

Algebra.

In the product AX = B with A ∈ Rm×k,X ∈ Rk×n and con­

sequently B ∈ Rm×n, the columns of the product B are linear

combinations of the columns of A, taken with the scalars in each

column of X .

More specifically, in our favorite equation Ax = b, b is a linear

combination of the columns ofA scaled by the components ofx. This

view makes it possible for us to unearth a system of linear equations

hiding behind the definitions of span and linear independence of

vectors.

8.3.1 Span of Vectors

Earlier, we defined the span of vectors in Eqn (6.2). For our own

nefarious ulterior motives, let’s recast the definition using other no­

tations and symbols as in the following equation:

Given n vectors ai ∈ Rm
, span({ai}) =

{

b | b =

n
∑

i=1

xiai

}

for any n scalars xi ∈ R

(8.1)

We switched from our previous notation of vectors (fromxi → ai)

and scaling factors (from si → xi). Can we unearth our favorite

matrix equation Ax = b from this new definition?

As we can see, we may redefine the span of a set of vectors as

follows: If we arrange a set of vectors as the columns of a matrix

A, then their span is all possible vectors we can get as the product

Ax = b for all possible vectors x. In the very next chapter, we will

have a lot more to say about this way of looking at the span.

8.3.2 Linear Independence

The definition of linear independence in Eqn (6.3) also hides within

it a system of linear equations. In order to rebrand linear dependency

also as a matrix equation that we will have the pleasure of meeting

again later on, let’s consider it for the columns ai ∈ Rm of A ∈
Rm×n, where the scalars are called xi ∈ R. The condition now
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The Zero Vector

The zero vector 0 ∈ Rn has the same role as the number zero in R: It is the identity of
vector addition. It has few special properties. It is the only vector that is parallel and
perpendicular (or, to be more precise, collinear and orthogonal) to all other vectors at
the same time.

As we know by now, a vector is collinear with a scaled version of itself. And, since
0 = sx for s = 0 for any x, we can say that 0 is collinear with any x. Furthermore, if
x · y = 0, x is orthogonal to y. Sure enough, x · 0 = 0 for any x, proving that 0 § x.

When it comes to vector spaces, 0 ∈ R0 is the smallest vector space we can think of.
It has only one vector. Scale it by any s ∈ R, we get 0. Add any “two” members of
this tiny vector space, we get 0 + 0 = 0. Therefore, this vector space (let’s call it Z)
is indeed closed under scalar multiplication and vector addition, as all vector spaces are
supposed to be.

The strange thing about it is the dimension of Z . It has to be zero because, as we
know, a vector space of dimension one is a line, not a point. What is the basis of Z?
We might think that it is the set {0}, in which case the cardinality of the set has to be
zero, because the dimension of a vector space defined as the cardinality of its basis. It
looks as though 0 does not count. Does it mean that a set of real numbers {0} has zero
members in it? Or that {0, 1} has only one member, despite the fact that we can clearly
see two of them? Are our eyes deceiving us?

The weirdness of the zero vector extends to the notion of vector subspaces as well.
All vector subspaces contain the zero vector, as do all vector spaces. Otherwise they
would not be closed under scalar multiplication (with s = 0). Therefore, the intersection
of any two subspaces is at least {0}. Are we justified in calling it a null set because we
know that its cardinality is zero?

These contradictions lead to the inescapable conclusion that the vector space contain­
ing only the zero vector Z = {0} does not need a basis at all. Remember, the basis set
{0} of Z needs to satisfy two conditions: (1) It should space the space (which it does),
(2) The vectors in the basis set need to be linearly independent. But the zero vector is
not linearly independent of itself, and therefore cannot form a basis of anything!

There is much more to zero than meets the eye.

becomes:

n
∑

i=1

xiai = 0 =⇒ Ax = 0 (8.2)

In other words, if we can find nontrivial solutions (meaning x ̸= 0)

for the matrix equation Ax = 0, then the columns of A are not

linearly independent.
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8.4 Named Algorithms

As we have encountered a few algorithms (by which we mean step­

by­step instructions to achieve an objective), it may be useful now to

compare them in terms of their purpose and end products, which is

what we have in Table 8.1.

When we started solving systems of linear equations, we encoun­

tered the Gaussian­elimination algorithm. Its objective is to get to

the row echelon form (REF) of the matrix (typically, the augmented

matrix
[

A | b
]

of the system Ax = b). Once we have the REF, we

can count the number of pivots as rank(A), and fully solve the system

by back substitution.

As a byproduct, Gaussian elimination produces a decomposition as

well, A = PLU . P , being a permutation matrix, has a determinant

of ±1, while L, being the inverse of a bunch of elementary matrices,

has a determinant of 1. Therefore, |A| can be computed from its REF,

which is the upper triangular matrix U as the product of its diagonal

elements, multiplied by |P | = ±1.

Table 8.1 Named algorithms and their uses

Name
Type of
Operation

Uses Decomposition

Gaussian
Elimnation

Elementary
Row
Operations

Row Echelon Form (REF).
Solve equations using back
substitution.
Determine rank.
Compute determinants.

PLU

Gauss­Jordan
Elimination

Elementary
Row
Operations

Reduced Row Echelon Form
(RREF).
Solve equations.
Determine rank.
Compute inverses.

None

Gram­
Schmidt
Process

Elementary
Column
Operations

Orthonormal basis matrix.
Works only on square,
invertible A.

QR

Gauss­Jordan elimination is an extension of Gaussian elimination,

where we scale the pivot rows to get the pivots to have a value of one.

We also get rid of all the matrix elements above the pivot in each pivot

column by subtracting appropriate multiples of the pivot row. Our

objective is to get an identity matrix if we were to look only at the
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pivot rows and columns. The resulting form is called the reduced row

echelon form or RREF. Once we have the RREF of the augmented

matrix of a system of linear equations, we can read off the solutions

from the pivot rows. Gauss­Jordan elimination also may produce a

decomposition, but we are not really concerned about it.

The RREF that Gauss­Jordan elimination produces can also tell

us about the rank, which is the number of pivots (also equal to the

sum of pivots because they all have value equal to one). But the real

interesting usage of this algorithm is in inverting a matrix, A. For this

purpose, we augment it with I and run the G­J algorithm on [A | I].
When the A part of the augmented matrix becomes I , we have the

inverse of A where I used to be.

[A | I]
RREF
−−−→ [I | A−1]

If the algorithm fails to produce I , it means that it could not find

a pivot in at least one row, and the matrix is not invertible; it is

rank­deficient.

The third algorithm, the Gram­Schmidt process, is different from

the first two in the sense that it does elementary column operations

(not row ones as the other two). However, it is not such a big differ­

ence because a column operation is a row operation on the transpose.

The purpose of Gram­Schmidt is to produce a matrix that is orthogo­

nal. In the process, it creates the so­called QR decomposition, where

R, an upper triangular matrix, is the inverse of all the elementary op­

erations performed by the matrix. But the process does not really

have to keep track of the operations and take its inverse because of

the basic property of orthogonal matrices, Q−1 = QT. Therefore,

A = QR =⇒ R = Q−1A = QTA

Once Q is obtained, R is only a matrix multiplication away.

We have created a neat little Table 8.1 to compare these three

algorithms. It may be useful as a quick reference to their steps,

purposes and usages.

8.5 Pivots, Ranks, Inverses and Determinants

Another topic worthy of a recap is the interconnected story of pivots,

ranks, inverses and determinants of matrices, and how it relates to the
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solvability of the underlying system of linear equations. We looked

at each of these topics at various points in our discussions so far.

Because of the intimate interconnections among them, it is best to

summarize it all as we do in Figure 8.1.

Matrices come in different shapes: Square, “tall” and “wide,” as

we described way back in §5.1.2 (page 89). Each shape of matrix

can be either full­rank or rank­deficient, thereby giving us six possi­

ble permutations. When we run Gauss­Jordan elimination on these

matrices, depending on their rank, we will get different canonical

forms, as we discussed in §5.2.2 (page 94). Figure 8.1 is an attempt

to put all these things together, and comment on the solvability of the

underlying system of linear equations.

Corresponding to each permutation1 of the matrix shape and its

rank status, we have a row in Figure 8.1. Referring to these rows, we

can make the following statements.

The only matrix that can be inverted is in the first row. It has a

nonzero determinant, and it leads to a unique solution for the system

of equations that it represents. The matrix in the second row also

has a determinant, but it is zero. The matrix is not invertible. Note

that its RREF has at least one zero row at the bottom. If the entry

on the augmented part of the matrix is also zero, then the equations

are consistent, but we do not have enough of them. Therefore, we

get an infinite number of solutions. We can see it because the RREF

has F in it, which indicates columns with no pivots and therefore

free variables. On the other hand, if the constant in this zero row is

nonzero, we have inconsistency and hence no solution.

We can make a similar statement about the third row also: The

system can be consistent (with 0 = 0 in the bottom rows), in which

case we get a unique solution, or it can be inconsistent, with no

solutions. Note the absence of F in the RREF, indicating that we will

never get an infinity of solutions.

The fourth row has a matrix with RREF with both free variables

and zero rows. So we have the possibilities of no solution or an

infinite number of solutions.

1To be very pedantic about it, it is not a permutation but an element of the Cartesian product
of the sets of matrix shapes and rank statuses.
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Shape Rank RREF Solvability

1
Square,	Full-rank:	

> * =&×&
2 3O Unique	Solution

2
Square,	Rank-deficient:	

> * =&×&
4 < 2

3P ·7P× ORP

8 ORP ×O

No	Solution	or	

Infinity	of	Solutions

3
Tall,	Full-rank:	

> * =(×&, M > O
2

3O

8 SRO ×O

No	Solution	or	

Unique	Solution

4
Tall,	Rank-deficient:

> * =(×&, M > O
4 < 2

3P · 7P× ORP

8 SRP ×O

No	Solution	or	

Infinity	of	Solutions

5
Wide,	Full-rank:

> * =(×&, M < O
9 3S·7S× ORS

Infinity	of	Solutions

6
Wide,	Rank-deficient:

> * =(×&, M < O
4 < 9

3P · 7P× ORP

8 SRP ×O

No	Solution	or	

Infinity	of	Solutions

Fig. 8.1 Properties and solvability of the linear equations Ax = b based on the RREF

of the coefficient matrix A,

When it comes to the full­rank “wide” matrix, we have no zero

row, which means we will never have inconsistency. But we never

have enough equations either (as indicated by the free variable part

in the RREF), and we always have an infinity of solutions.

Rank­deficient “wide” matrix leads to situations similar to rows 2

and 4, with no solution or infinite number of solutions. To reiterate,

when a matrix is rank­deficient (as in rows 2, 4 or 6), regardless of

its shape, we either have no solution (inconsistent equations) or an

infinite number of solutions (not enough equations).

Figure 8.1 is color­coded for easy reference: Whenever we see free

variables (corresponding to columns with no pivots) in RREF, shown

in purple, an infinity of solutions is a possibility, obviated only by

the existence of inconsistent equations (shown in red) as indicated by

zero rows in the A part of
[

A | b
]

, with the b part nonzero. The only

instances where we get a unique solution is when we can have an In
in the RREF, shown in green. We can also see that a tall matrix can

never have an infinity of solutions and a wide one can never have a

unique solution.



156 Review and Recap

8.6 Two Geometries

When we started visualizing linear equations (Figure 4.1), we were

doing it in the coordinate space, where we have points and lines and

planes. A linear equation in the coordinate space of R2, for instance,

is a line. As we know, each row of the augmented matrix
[

A | b
]

represents an equation, which has a shape in the coordinate space.

In other words, when we think of equations, we are thinking rows,

and we can consider the thinking process the row picture of Ax = b.

The dimension of this coordinate space is the same as the number of

unknowns.

We have a wholly separate vector space R2 as well, where we have

all possible vectors with two components and nothing else. When

we think of Ax = b as a system of equations demanding that b be

the right linear combination of the columns of A as specified by x,

we are working with the latter. If we have two rows, our column

vectors have two elements, and we are working with the vector space

R2, regardless of how many unknowns we may have. If we have

three equations, as in Figure 6.7, we are in the vector space R3, even

though we have only two unknowns. This mode of thinking can be

considered the column picture of systems of linear equations. This

column picture is the more sophisticated, university­level thinking

we are trying to foster in this course.
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9
The Four Fundamental

Spaces

Time and space are modes by which we think and not

conditions in which we live.

—Albert Einstein

Our geometric view started with the notion that we can think of

the solution to the system of linear equations Ax = b as a quest for

that special x whose components become the coefficients in taking

the linear combination of the columns of A to give us b. Since this

opening statement was a bit too long and tortured, let’s break it down.

Here is what it means:

• The product of the matrix multiplication Ax is a linear combi­

nation of the columns ai of A.

• The linear combination is taken with coefficients equal to the

components of x = xi. In other words, the product is:

Ax =
n

∑

i=1

xiai
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• Our system of linear equations Ax = b, therefore becomes the

condition:
n

∑

i=1

xiai = b

Solving this system means finding the right xi so that the linear

combination satisfies the condition.

We also learned that the collection of all possible linear combina­

tions of a set of vectors is called the span of those vectors, and it is

a vector subspace, which is a subset of a vector space. For example,

Rm is a space1 and n vectors ai ∈ Rm span a subspace contained

within Rm. Let’s call this subspace C ¦ Rm. If, among the n vectors

that span C, only r f n of them are linearly independent, then those

r vectors form a basis for C and the dimension of this subspace C
is indeed r (which is the cardinality of the basis). In fact, even if

n > m, the n vectors span only a subspace C ¢ Rm if the number of

independent vectors r < m. Note that r can never be greater than m,

the number of components of each of our vectors ai ∈ Rm.

9.1 Column Space

The choice of the symbols in the previous paragraph was not an

accident. We are ready to introduce the concept of the Column Space

of a matrix.

Column Space

Definition: The column space C of a matrix is the span of its columns.

For a matrix A =
[

ai

]

∈ Rm×n, C(A)
def
=

{

z | z =
n

∑

i=1

xiai

}

where xi ∈ R. Note that C(A) ¦ Rm, where m is the number of

rows of A because each of its column vectors ai ∈ Rm.

Are the columns of A (ai) a basis for C(A)? Remembering that

the basis of a space or subspace is the minimal set of vectors that

span it, we can see that a decent basis for C(A) would be the linearly

1Once again, we will be dropping the ubiquitous “vector” prefix from spaces and subspaces.
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independent columns of A. How many of them are there? We saw

earlier that the number of linearly independent columns of A is its

rank, rank(A). To be more precise, we should call it the column­rank

of A, but we also saw that the column and row ranks were the same.

Finally, the dimension of a space or subspace is the number of vectors

in its basis. Therefore, the dimension of the column space is the rank.

Conversely, we can define rank(A) as the dimension of C(A).

9.1.1 Significance of Column Space

As we said in the introduction to this chapter, the solution to Ax = b

is that x which produces the linear combination of the columns of A

equalling b. We then defined the column space C(A) as all possible

linear combinations of the columns ofA. In other words, ifb ̸∈ C(A),
we will never be able to find a solution vector x.

We can, in fact, turn the last statement about the solvability of

Ax = b and C(A) into an alternative definition of column space:

C(A) is the set of all vectors b if there exists x ̸= 0 such that

Ax = b.

Note that the elementary column operations, which we used in

the Gram­Schmidt process, do not change the column space because

they are all about taking linear combinations of the columns or scaling

them. The span of the columns is unaffected by such linear operations.

Therefore, in A
G­S
−−→ Q, both A and its orthogonal cousin Q have

the same column space: C(A) = C(Q).
On the other hand, the elementary row operations in Gaussian

and Gauss­Jordan eliminations do affect the column space. What is

unaffected would be the linear combination of the rows, which we

will call the row space. But before getting to it, let’s look at the null

space.

9.2 Null Space

So far, we have concerned ourselves mostly with the solution of

Ax = b. Let’s now take a look at the so­called homogeneous system

of linear equations Ax = 0. In fact, we did come across this system

when we were talking about linear independence in the last chapter,

rebranding its condition as a matrix equation in Eqn (8.2). If Ax = 0
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for some nonzero vectorx (in other words, if the homogeneous system

has a nontrivial solution), then the columns of A are not linearly

independent.

The collection of all vectors x that solve Ax = 0 (called the

solution set) is the null space of A, denoted by N (A). Let’s put

down this statement as the definition of the null space.

Null Space

Definition: The null space N of a matrix A is the complete set of all

vectors that form the solutions to the homogeneous system of linear

equations Ax = 0.

N (A)
def
= {x | Ax = 0}

Note that if we have two vectors in the null space, then all their

linear combinations are also in the null space. x1, x2 ∈ N (A) =⇒
x = s1x1 + s2x2 ∈ N (A). If Ax1 = 0 and Ax2 = 0, then

A(s1x1 + s2x2) = 0 because of the basic linearity condition we

learned way back in the first chapter. What all this means is that

the null space is indeed a vector subspace. Furthermore, N (A) is

complete, by definition. In other words, we will not find a vector x

that is not in N (A) such that Ax = 0. In the cold hard language of

mathematics, x ∈ N (A) ⇐⇒ Ax = 0.

For any and all vector x ∈ N (A), in the null space of A, its dot

product with the rows of A are zero. If rT

i
is a row of A, we have:

Ax = 0 =⇒







...

rT

i

...






x = 0 =⇒ rT

i
x = 0 ∀ i (9.1)

The dot product being zero means that the vectors in N (A) and the

rows ofA are orthogonal. It then follows that any linear combinations

of the rows of A are also orthogonal to the vectors in N (A). And,

the collection of the linear combinations of the rows of A is indeed

their span, which is a subspace we will soon call the row space of A.

9.3 Row Space

The set of all possible linear combinations of the rows of a matrix is

called its row space, with one little complication. Since our vectors
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are all column vectors, and the rows of a matrix are definitely not

columns, we think of the transpose of the rows as the vectors whose

linear combinations make the row space. Equivalently, we may

transpose the matrix first and call the column space of the transpose

the row space of the original. That is to say, the row space of A is

C(AT), which is the notation we will use for row space. Since the row

rank is the same as column rank, the number of linearly independent

rows in A is its rank, which is the same as the dimension of C(AT).

9.3.1 Significance of Row Space

If all vectors in a subspace are orthogonal to all vectors in another

subspace, then we call these two subspaces orthogonal. Earlier, we

established that the row and null spaces of a matrix are orthogonal to

each other. In fact, the row and null spaces are orthogonal comple­

ments of each other, which means that all the vectors in the containing

space that are orthogonal to all the vectors in the null space are in

the row space. Again, this complex statement needs some disman­

tling (and convincing): What this statement says, in mathematical

language, is the following:

• We have a matrix A, with a row space C(AT) and null space

N (A).

• x ̸∈ N (A), y ∈ N (A), and xTy = 0 =⇒ x ∈ C(AT).

The proof of this assertion is probably beyond the remit of this book

on applied Linear Algebra, and is, therefore, included as an optional

box on “Orthogonal Complementarity.” What it means, however,

is important for us to know. Let’s first illustrate it using an example.

A =





1 0 0
0 1 0
0 0 0



 =⇒ Basis for C(AT) =











1
0
0



 ,





0
1
0











Clearly, ∈ R3×3, rank(A) = 2 and therefore C(AT) ¢ R3 with the

dimension 2, which is why we have two basis vectors, the pivot rows

of A. In this case, A is already in its RREF.

In order to compute N (A), we have to find the solutions to Ax =
0. For ourA, we can see that all vectors with the first two components

zero and a nonzero third component will give Ax = 0. We can
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Orthogonal Complementarity

Before attempting to prove that C(AT) and N (A) are orthogonal complements, it is

perhaps best to spell out what it means. It means that all the vectors in C(AT) are
orthogonal to all the vectors in N (A), which is the orthogonal part. It also means

if there is a vector orthogonal to all vector in C(AT), it is in N (A), which is the
complement part. Here are the two parts in formal lingo:

1. y ∈ C(AT) and x ∈ N (A) =⇒ xTy = 0

2. (a) y ̸= 0 ∈ C(AT) and

(b) xTy = 0 ∀y ∈ C(AT) =⇒ x ∈ N (A)

3. Or, conversely,
(a) x ∈ N (A) and

(b) xTy = 0 ∀x ∈ N (A) =⇒ y ∈ C(AT)

The first part is easy to prove, and we did it in Eqn (9.1), which just says that each
element of Ax has to be zero for Ax = 0 to be true.

To prove the second part, let’s think of the matrix AT as being composed of columns
ci. If y ∈ C(AT), as in condition 2(a), we can write y as a linear combination of ci:

y =
∑

sici = A
T
s

for some si, which we put together as a column vector s. If xTy = 0 as condition 2(b)

says, then xTATs = 0 =⇒ (Ax)T s = 0. We know that s ̸= 0 because it is the

linear combination that gives y ̸= 0. The only way (Ax)T s = 0 can be true for all

y ∈ C(AT) is if Ax = 0 =⇒ x ∈ N (A).

The third part says Ax = b and y § x. Let’s assume that y ̸∈ C(AT), with the

hope that it leads to a contradiction. y ̸∈ C(AT) =⇒ Ay = 0, because otherwise y

would be in the column space. But if y ̸∈ C(AT),y ∈ N (A), which means it is a linear
combination of the vectors in N (A). And it means y cannot be orthogonal to all of

them, as 3(b) requires. Hence our starting assumption has to be wrong, and y ∈ C(AT).

therefore write:

N (A) ¢ R3, of one dimension, with the basis











0
0
1











Thinking in terms of the coordinate space, we see that the row space

is actually the xy­plane and the null space is the z­axis. They are

indeed orthogonal complements.

Let’s go back to talking about the general case,A ∈ Rm×n, rank(A) =
r. We know that by definition, all vectors x ∈ N (A) get transformed

to 0 by Ax = 0. Because of the orthogonal complementarity, we

also know that all orthogonal vectors are in C(AT), the row space
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of A, as illustrated above with our toy example. All the vectors in

the row space get transformed to nonzero vectors in Rm. What about

the rest of the vectors? After all, most vectors in Rn are in neither

C(AT) nor N (A): They are linear combinations of these two sets of

vectors. Let’s take such a vector x = x∥ + x§ where x∥ ∈ C(AT)
and x§ ∈ N (A).

Ax = A(x∥ + x§) = Ax∥ +Ax§ = Ax∥ + 0 = Ax∥

What this equation tells is that all vectors not in N (A) also end up in

C(A) byAx. Moreover, multiple vectorsx ̸∈ N (A) get transformed

to the same b ∈ C(A): It is a many­to­one (surjective) mapping.

What is special about the row space is that the mapping from C(AT)
to C(A) is a one­to­one (injective) mapping. Since it is an important

point, let’s state it mathematically:

x ∈ C(AT) and Ax = b =⇒ for a given x, b is unique.

In order to see it, we have to appreciate that b is a linear combination of

the linearly independent columns of A. For a specific x, it is a linear

combination with the specified coefficients. As we know, probably

from the first chapter, there is only one such linear combination; we

cannot get two different linear combinations with the same set of

linearly independent vectors and coefficients.

A consequence of C(AT) being N (A)§ is that their dimensions

add up to the dimension of the containing space. Or, n = r +
dim (N (A)) =⇒ dim (N (A)) = n − r. The dimension of the

null space of A is called its nullity, and the statement that the rank

and nullity add up to the number of columns of A is the famous

rank­nullity theorem.

9.4 Left Null Space

To complete the picture and bring out the beautiful symmetry of the

whole system, we will define one more null space, which is N (AT),
which is also called the left null space. It lives on the same side as

the column space, C(A), and no vector in the input space Rn (other

than the zero vector) can reach this space.
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9.5 Computing the Four Fundamental Subspaces

If we want to “find” or “compute” the column, row or null space

of a matrix, how do we proceed? First of all, we need to clarify

what “finding” means, when it comes to a subspace. Here is the

clarification: Find the basis for the subspace, state its dimension, and

the dimension of the space of which it is a subspace. For instance,

we could say, “C(A) ¢ Rm, dim(C(A)) = r, with the basis = {vi}”

specifying the three pieces of information we are after.

9.5.1 Row Space

We start with the computation of the row space because it is the

easiest one. To find the rank and basis of C(AT), we will fall back on

Gaussian (or Gauss­Jordan) elimination, to get to the REF (or RREF)

ofA. Remembering that row operations do not change the row space,

a good basis for the row space would be the pivot rows of RREF. The

dimension of the row space is the number of pivots, AKA rank(A) and

the containing space is Rn, where n is the number of columns of A.

The full specification of the row space of A ∈ Rm×n, rank(A) = r
would therefore be C(AT) ¦ Rn with dimension = r and basis = the

set of r pivot rows.

9.5.2 Column Space

For a matrix A ∈ Rm×n of rank r, the dimension of C(A) is r, the

dimension of the containing space is m, the number of rows. Or,

more compactly, C(A) ¢ Rm, dim(C(A)) = r.

How do we find the basis, or the linearly independent columns of

A? The pivot columns are the ones that are linearly independent in

the reduced forms. It turns out that the corresponding columns in

the original matrix A are the ones that are linearly independent, and

therefore, they form a good basis for C(A). Let’s see why.

In order to make the discussion easier, we are going to call the

RREF of A by the name R. As we know, the solution set of the

homogeneous system Ax = 0 can be obtained from its augmented

matrix
[

A | 0
]

, by finding its RREF, which is
[

R | 0
]

. Note that the

constants part of the augmented matrices are still 0, which is different

from what happens if we do
[

A | b
] RREF
−−−→

[

R | b′
]

where b ̸= b′ in
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general. But when b = 0, the constants part does not get affected by

row operations. Since the solution of a system of linear equations is

not affected by row operations, the solution sets for A and R are the

same.

Next, we can see that in R, the pivot columns are linearly indepen­

dent of each other by design. They are the only ones with a nonzero

element (actually 1) in the pivot positions, and there is no way we

can create a 1 by taking finite combinations of 0. Therefore, a linear

combination of the pivot columns in R will be 0 if and only if the

coefficients multiplying them are all zero. Since the solution sets

for A and R are the same, the same statement applies to A as well.

Therefore, the columns in A that correspond to the pivot columns in

R are linearly independent. And indeed, they form a basis for the

column space of A.

9.5.3 Null Spaces

The null space of a matrix would be the complete solution of the

homogeneous system of equationsAx = 0. When we write down the

augmented matrix, it becomes
[

A | 0
]

, and whatever row operations

we perform on it will not change the constants or RHS part because

it is 0. We can therefore solve Ax = 0 by performing Gauss­Jordan

elimination on the matrix A itself. If we find columns with no pivots,

we will have free variables and null space.

To compute the left null space, we will follow the same procedure

to find the complete solution set of the homogeneous system of linear

equations ATx = 0. After all, the left null space is N (AT), which

is the null space of AT.

9.6 Summary of the Four Spaces

We are now ready to summarize the four fundamental subspaces

defined by a matrix. We will do it as a nice picture first, discuss

it in the text here and then present it again in two tables. It is that

important.
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Fig. 9.1 A pictorial representation of the four fundamental subspaces defined by a matrix.

9.6.1 General Properties

In Figure 9.1, we have a pictorial representation of what the four

fundamental subspaces mean in terms of the mapping A : Rn 7→ Rm

in the system Ax = b. They basically carve out different segments

of the two vector spaces, Rn and Rm, with specific properties.

The row space and null space are orthogonal complements. So are

the column space and the left null space. All the vectors in the mull

space (N (A)) map to the zero vector 0. All other vectors in the row

space get mapped to the column space C(A). All other vectors are

linear combinations of the vectors in N (A) and C(AT). They also go

to C(A), was we saw earlier. Since C(AT) and N (A) are orthogonal

complements, we have nothing left in Rn to go to the left null space

N (AT), other that the zero vector 0 ∈ Rn.

9.6.2 Matrix Shapes and the Spaces

As we saw, the geometric view of the fundamental spaces defined by

a matrix are closely connected to its rank and the solvability of the

system of linear equations it represents. It may be worth our time to

look at the shapes of the matrix to see what its fundamental spaces

look like. The four subspaces are closely related to the RREF of the

matrix, and so are the solvability of the underlying system of linear
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Table 9.1 Summary of the four fundamental spaces

Name, Space, Dim. Basis Description

Column Space
C(A) ¦ Rm

dim(C(A)) = r
Pivot columns of A

Range (Image) of
A : Rn 7→ Rm

b ̸∈ C(A) =⇒ no solution

Row Space
C(AT) ¦ Rn

dim(C(AT)) = r

Pivot rows of R or A
Coimage of A : Rn 7→ Rm

x ∈ C(AT) =⇒ x 7→ b ̸= 0

Null Space (AKA
Kernel)
N (A) ¦ Rn

dim(N (A)) = n− r

Solution set of
Ax = 0 or Rx = 0

x ∈ N (A) =⇒ x 7→ 0

If Ax = b and x§ ∈ N (A),
A(x+ x§) = b

Left Null Space
N (AT) ¦ Rm

dim(N (AT)) = m−r

Solution set of
ATx = 0 or
R′x = 0

Unreachable, AKA Cokernel
b ∈ N (AT) =⇒ Ax ̸= b

The table shows how the four fundamental subspaces of a matrix are related to the linear

equations it represents. A ∈ Rm×n, rank(A) = r in Ax = b with A
RREF−−−→ R and

AT RREF−−−→ R′

equations. Keep in mind that while the REF (which is the result of

Gaussian elimination) can have different shapes depending on the

order in which the row operations are performed, RREF (the result

of Gauss­Jordan) is immutable: A matrix has a unique RREF.

Table 9.2 The fundamental spaces of matrices of different shapes

Matrix Shape RREF Observations on the Four Spaces

Square, full­rank
A ∈ Rn×n

rank(A) = n
In

C(A), C(AT) = Rn

N (A),N (AT) = {0}

“Tall,” full­rank
A ∈ Rm×n, m >
n
rank(A) = n

[

In

0(m−n)×n

]

C(A) ¢ Rm, dim (C(A)) = n

C(AT) = Rn

N (A) = {0}
N (AT) ¢ Rm, dim (N (AT)) = m−n

“Wide,” full­rank
A ∈ Rm×n, m <
n
rank(A) = m

[

Im · Fm×(n−m)

]

C(A) = Rm

C(AT) ¢ Rn, dim (C(AT)) = m
N (A) ¢ Rn, dim (N (A)) = n−m

N (AT) = {0}

Rank­deficient
A ∈ Rm×n

rank(A) = r < rm
rm = min(m,n)

[

Ir · Fr×(n−r)

0(m−r)×n

]

C(A) ¢ Rm, dim (C(A)) = r

C(AT) ¢ Rn, dim (C(AT)) = r

N (A) ¢ Rn, dim (N (AT)) = n− r

N (AT) ¢ Rm, dim (N (A)) = m− r
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We have presented, in Table 9.2, a comparison of the various

possible shapes and ranks of the matrices and the corresponding

variations in their fundamental spaces. We should note the following

points:

1. The column and row spaces always have the same dimension,

and it is equal to the rank of the matrix. In fact, it is another

definition for the rank.

dim (C(A)) = dim (C(AT)) = rank(A)

2. The dimension of the column space (which is the same as the

rank) and the dimension of the null space (which is also called

nullity) add up to the dimension of the domain. This is the

famous rank­nullity theorem2.

For A ∈ Rm×n : Rn 7→ Rm

, dim (C(A)) + dim (N (A)) = n

9.7 Computing the Spaces

It is probably best to illustrate the computation of the four funda­

mental spaces of a matrix using an example. Let’s compute all four

fundamental subspaces of the following matrix:

A =





1 1 1 6
2 2 1 9
1 1 0 3





In fact, this matrix and an associated system Ax = b are very similar

to something we solved way back in Chapter 4, in Eqn (4.4), when

we were still in Linear Algebra primary school. The difference now

is that we have added one more row, and removed the RHS of the

equations in
[

A | b
]

; we are working with just A now.

A =





1 1 1 6
2 2 1 9
1 1 0 3





REF
−−→





1 1 1 6
0 0 −1 −3
0 0 0 0





RREF
−−−→





1 1 0 3
0 0 1 3
0 0 0 0



 = R

2Wikipedia describes it as: “The rank­nullity theorem is a theorem in linear algebra, which
asserts that the dimension of the domain of a linear map is the sum of its rank (the dimension
of its image) and its nullity (the dimension of its kernel).”
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Looking at R, we can see that we have pivots in columns 1 and 3.

The rank of the matrix is 2. Let’s write down all the subspaces.

9.7.1 Column Space

The column space lives in R3 because the columns have three compo­

nents. The dimension of the column space = the rank = the number of

pivots = 2. The basis (which is a set) consists of the column vectors

in A (not in R) corresponding to the pivot columns, namely 1 and 3.

So here is our answer:

C(A) ¢ R3; dim (C(A)) = 2; Basis =











1
2
1



 ,





1
1
0











9.7.2 Row Space

For the row space, we can take the pivot rows of R as our basis. Note

that the row space lives in R4 because the number of columns of A

is 4. It also has a dimension of 2, same as the rank.

C(AT) ¢ R4; dim
(

C(AT)
)

= 2; Basis =























1
1
0
3









,









0
0
1
3























Notice how we have been careful to write the basis as a set of column

vectors, although we are talking about the row space. Our vectors are

always columns.

9.7.3 Null Space

For the null space, we will first solve the underlying Ax = 0 equa­

tions completely, highlight a pattern, and present it as a possible

shortcut, to be used with care.

We saw earlier that Ax = 0 and Rx = 0 have the same solution

set, which is the null space. Writing down the equations explicitly,
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we have

Rx =





1 1 0 3
0 0 1 3
0 0 0 0













x1

x2

x3

x4









= 0

=⇒ x1 + x2 + 3x4 = 0 and x3 + 3x4 = 0

(9.2)

Noting that x2 and x4 are free variables (because the corresponding

columns have no pivots), we solve for x1 and x3 as x3 = −3x4 and

x1 = −x2 − 3x4. Therefore the complete solution becomes:









x1

x2

x3

x4









=









−x2 − 3x4

x2

−3x4

x4









= x2









−1
1
0
0









+ x4









−3
0
−3
1









The complete solution is a linear combination of the two vectors

above because x2 and x4, being free variables, they can take any

value in R. In other words, the complete solution is the span of these

two vectors, which is what the null space is. We give our computation

of the null space as follows:

N (A) ¢ R4; dim (N (A)) = 2; Basis =























−1
1
0
0









,









−3
0
−3
1























9.7.4 Left Null Space

The steps to compute N (AT) are identical to the ones for N (A),
except that we start with AT instead of A, naturally. We will not go

through them here, but, as promised earlier, we will share a shortcut

for computing null spaces in the box on “Null Spaces: A Shortcut,”

and use the left­null­space computation of this A as an example.

From the examples worked out, we can see that the null­space

computations and the complete solutions of the underlying system of

linear equations have a lot in common. It is now time to put these

two topics on an equal footing, which also gives us an opportunity to

review the process of completely solving a system of linear equations

and present it as a step­by­step algorithm.
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Null Spaces: A Shortcut

Once we have the RREF of a matrix, we can write down the null space by looking at it.
Here are the steps:

1. Identify the free­variable columns (which are the ones without pivots).

2. Copy these columns with a negative sign for the entries, while leaving a blank
space for the free variables. Ignore zero rows at the bottom of the RREF.

3. Type in 1 for the free variable and zero for all others in the vectors created in
(2). This is our basis.

4. The dimension of the containing space is the number of variables. The dimension
of the null space is the number of basis vectors in (3)

Illustrating it with the left­null­space computation of the example in the text:

A
T =







1 2 1
1 2 1
1 1 0
6 9 3






; RREF(AT) =







1 0 −1
0 1 1
0 0 0
0 0 0







Using our shortcut,

1. The only free variable is the third one (call it x3).

2. Copying it, with the negative sign and a blank ⃝ in the third position (because
our free variable is x3), we get:





1
−1
⃝





3. In the blank position, indicated by ⃝, of the first basis vector created in (2) we
type in 1.

4. The final answer is:

N (AT) ¢ R
3; dimN (AT) = 1; Basis =











1
−1
1











A bit of thinking should convince us that this shortcut is, in fact, the same as what we
did in computing the null space in the text, by writing down the complete solution. We
can easily verify that we get the same answer by applying this shortcut on the matrix R
in Eqn (9.2).

9.8 Review: Complete Solution

The computation of the null space of a matrix is, in fact, the same

as finding the special solutions of the underlying system of linear

equations. When we found the complete solution earlier in §4.3.2

(page 76) and when we computed the null space above, the procedures
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may have looked ad­hoc. Now that we know all there is to know about

the fundamental spaces of a matrix, it is time to finally put to rest the

tentativeness in the solving procedure and present it like an algorithm

with unambiguous steps. Let’s start by defining the terms.

In Ax = b, the complete solution is the sum of the particular so­

lution and the special solutions. We can see an example in Eqn (4.4),

where the first vector is the particular solution and the second and

third terms making a linear combination of two vectors is the special

solution. The linear combination is, in fact, the null space of A. As

we saw earlier, if x∥ is a solution to Ax = b, then x∥ + x§ also is a

solution for any x§ ∈ N (A) because, as we saw earlier,

Ax = A(x∥ + x§) = Ax∥ +Ax§ = Ax∥ + 0 = Ax∥

x∥ is a particular solution (which may be called xp) and the set of x§

(AKA xs) is the special solution.

Since the special solution, the set ofx§, is a subspace, we can select

any full set of linearly independent vectors as the basis to specify it.

Let’s work through an example to illustrate whatever we stated so far,

before listing the algorithm for completely solving a system of linear

equations.

9.8.1 An Example

We will reuse the example in Eqn (4.4) (on page 77), where we started

with these equations:

x1 + x2 + x3 + 2x4 = 6

2x1 + 2x2 + x3 + 7x4 = 9

from which we got the augmented matrix:

[

A | b
]

=

[

1 1 1 2 6
2 2 1 7 9

]

REF
−−→

[

1 1 1 2 6
0 0 −1 3 −3

]

and ended up with the complete solution:

x =









3
0
3
0









+ t1









−1
1
0
0









+ t2









−5
0
3
1









(9.3)
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The null space of the coefficient matrix has the basis vectors appearing

as the linear combination in the last two terms above. N (A) is a plane

in R4, and we can use any two linearly independent vectors on it as

its basis. The exact basis vectors we wind up with depend on the

actual elimination steps we use, but they all specify the same plane

of vectors, and indeed the same subspace. As we can see, in solving

the system of equations above, we started with the row­echelon form

of the augmented matrix
[

A | b
]

. The REF (the output of Gaussian

elimniation) of a matrix is not unique; it is the RREF (from Gauss­

Jordan elimination) that is unique.

Let’s solve the system again. This time, we will start by finding

the RREF (the output of Gauss­Jordan) because it is unique for any

given matrix.

[

A | b
]

=

[

1 1 1 2 6
2 2 1 7 9

]

RREF
−−−→

[

1 1 0 5 3
0 0 1 −3 3

]

In order to find a particular solution, we first set values of the

free variables to zero, knowing that they are free to take any values.

This step, in effect, ignores the free variables for the moment. In

the example above, the free variables are x2 and x4, corresponding

to the columns with no pivots. Ignoring these pivot­less columns,

what we see is an augmented matrix
[

A | b
]

=
[

I | b′
]

, giving us the

particular solution3 as below:

[

1 0 3
0 1 3

]

=⇒

[

x1

x3

]

=

[

3
3

]

=⇒ xp =









x1

x2

x3

x4









=









3
0
3
0









The special solutions are from the null space, and we have to

solve the homogeneous system of equations Ax = 0, for which the

augmented matrix is
[

A | 0
]

. What we do, in practice, is to ignore

the b part of Ax = b, or set it to zero, and work with the coefficient

part. We then cyclically set one free variable to one, and the rest to

zero in the equations specified by RREF(
[

A | 0
]

):
[

1 1 0 5 0
0 0 1 −3 0

]

=⇒
x1 + x2 + 5x4 = 0

x3 − 3x4 = 0

3Note that the particular solution obtained using this prescription does not have to be in the
row space of the coefficient matrix because we are taking zero values for the free variables.
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Setting x2 = 1 and x4 = 0:

x1 + x2 + 5x4 = 0
x3 − 3x4 = 0

=⇒
x1 + 1 = 0

x3 = 0
=⇒ x⊥1 =









x1

x2

x3

x4









=









−1
1
0
0









Now, setting x2 = 0 and x4 = 1:

x1 + x2 + 5x4 = 0
x3 − 3x4 = 0

=⇒
x1 + 5 = 0
x3 − 3 = 0

=⇒ x⊥2 =









x1

x2

x3

x4









=









−5
0
3
1









Putting it all together, we can write down the complete solution as:

x =









3
0
3
0









+ t1









−1
1
0
0









+ t2









−5
0
3
1









(9.4)

Comparing Eqn (9.4) above to Eqn (9.3), we can see that we

got identical solutions in our example. However, in principle, the

vectors in the linear combination in the last two terms may differ.

Our assertion is that what we may have in Eqn (9.4), if they were

different from the ones in Eqn (9.3), would merely be another pair

of linearly independent vectors in the same planar subspace specified

by the latter.

How do we make sure though? We know enough Linear Algebra

to answer this question: If we were to place these four vectors in a

matrix, we would have only two linearly independent columns, and

the rank of the matrix would be two. How do we know the rank? We

perform row­reduction on it and count the number of pivots.

Squeezing out the last teachable moment from this review of com­

pletely solving linear systems, the rank is also the trace of the RREF

of the coefficient matrix because the pivots are all normalized to one.

9.8.2 The Algorithm

Here is a description of what we did in the example above, but using

the most general case. We start with Ax = b, where A ∈ Rm×n

and rank(A) = r f min(m,n). We know the shape of the canonical
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form, RREF:

A
RREF
−−−→ R =

[

Ir · Fr×(n−r)

0(m−r)×n

b′

]

Note that we use the symbol · to indicate that the columns of Ir
and Fr×(n−r) may be shuffled in; we may not have the columns of F

neatly to the right of I . With this picture in mind, let’s describe the

algorithm for completely solving the system of linear equations:

1. Find RREF through Gauss­Jordan on the augmented matrix
[

A | b
]

→ R

2. Ignore the free variables by setting them to zero, which is the

same as deleting the pivot­less columns in R and zero rows,

giving us Ir

3. Get the particular solution, x∥ with the r values in b′, and zeros

for the n− r free variables

4. For each free variable, with the RREF of the homogeneous

augmented matrix
[

A | 0
]

(which is the same R as above, but

with 0 instead of b′ in the augmenting column):

• Set its value to one, and the values of all others to zero

• Solve the resulting equations to get one special solution,

x§i

• Iterate over all free variables

5. Write down the complete solution:

x = x∥ +
n−r
∑

i=1

tix§i

6. Know that we have computed the null space as well:

N (A) ¢ Rn, dim (N (A)) = n− r, Basis = {x§i}

9.9 Other Names

In order to see why these fundamental subspaces go by their aliases,

we have to look at functions again. In normal algebra, when we
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have a function f(x) : R 7→ R, the totality of the possible values of x
(which would be all ofR since x is the so­called independent variable)

is called the domain and that of y = f(x) is called the codomain.

Not all of the codomain may be reached though. For instance, if

f(x) = x2, the codomain is R, but the part of the codomain that is

reachable is y > 0. This part is called the range. Some people call

the range the image (because it is what x is reflected into, if we were

to guess). Not to be partial to y, they also call the part of the domain

that is reflected the coimage.

Thinking of A as a mapping or function A : Rn 7→ Rm, the

domain is Rn and the codomain is Rm. The column space may be

called the range or image, and the row space is the coimage, although

we will stay away from such abominations. Not to be outdone, the

null spaces also go by names such as kernel and right kernel. This

naming is a bit more mysterious, but everything in the kernel gets

mapped to 0, and nothing in the domain Rn ever gets mapped to the

left kernel.

Regardless of what names they go by, the four fundamental sub­

spaces bring together almost everything we learned so far. They form

the basis of the advanced topics in Linear Algebra and are therefore

critical for furthering our understanding.
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10
Projection, Least Squares

and Linear Regression

It was one thing to use computers as a tool, quite another

to let them do your thinking for you.

—Tom Clancy

Now that we learned the four fundamental subspaces defined by

a matrix, we can look at one of its most widely used applications

in machine learning, namely linear regression. For this, we will be

expanding on our notion of projection of one vector onto others. We

will be projecting to subspaces instead.

10.1 Projection Revisited

As a preparation for orthonormalization and the Gram­Schmidt pro­

cess, we looked at projection earlier in §7.4.3 (page 134). Our ap­

proach was to fall back on the trigonometric definition of the dot

product using the cosine of the angle between the vectors. This ap­

proach was perhaps ill­advised for we are not learning trigonometry
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here, but the much superior Linear Algebra. The right approach to

be taken, as we shall see here, is much more elegant.
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Fig. 10.1 Projection of one vector (b in blue) onto another (a in red). The projection

b̂ is shown in light blue, and the error vector in green. The right panel shows that many

different vectors (blue ones) can all have the same projection. The projection operation is

many­to­one, and cannot be inverted.

In Figure 10.1, in the left panel, we have a blue vector b being

projected onto the red a. The projection is another vector, b̂ in a

brighter shade of blue. Of all the vectors along a, why is this the

right vector to call the projection? One way to look it is to imagine

that we are shining some light from the top, perpendicular to a, in

the plane containing a and b. The projection then is the shadow

cast by the blue vector on the red one. Another way is to think of

the difference vector, shown in green as e, to be a minimum. The

projection is that vector along the direction a which is closest to b,

where closeness is defined as the distance between the tips of b and

its projection b̂, which is the same as the norm ∥e∥. We can call

this green vector the error (hence the name e), and we are trying to

minimize this error.

And when is e the smallest? It is when a and e are orthogonal to

each other, or when a § e. We know the condition for orthogonality:

The dot product aTe = 0. Since b̂ lies along the direction of a, we

know that it has to be a scalar multiple: b̂ = ax, where we called

the scalar x (and put it after a for our own dark purposes). For

each value of x, we will get a different candidate for the projection.

The right candidate, the one that minimizes the error, is b̂, for which

x = x̂. Now the problem of computing the projection boils down to
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computing x̂.

aTe = aT(b− b̂) = aT(b− ax̂) = 0

aTax̂ = aTb =⇒ x̂ =
aTb

aTa

b̂ = ax̂ = a
aTb

aTa
= a(aTa)

−1
aTb

P = a(aTa)
−1
aT

(10.1)

Here, in addition to computing the projection value x̂, the projection

vector b̂, we have also defined a projection matrix P which we can

multiply with any vector and gets its projection onto a. It is indeed

a matrix because aaT is of a column matrix (n × 1) multiplying a

row matrix (1 × n), giving as an n × n matrix. The factor (aTa)
−1

in between is just a scalar, which does not change the shape.

Comparing the derivation of the projection matrix above in Eqn (10.1)

to the one we did earlier in Eqn (7.9), we can appreciate that they

are identical. It is just that the Linear Algebra way is much more

elegant. In this derivation, we took certain facts to be self­evident,

such as when two vectors are orthogonal, their dot product is zero.

We can indeed prove it, as shown in the box on “Orthogonality and

Dot Product.”

10.1.1 Why Project?

What we did was to project a vector b onto another one a, which is

to say we found the vector closest to b in the subspace spanned by a.

We now want to expand on this notion on projecting to a subspace,

but before that, we may want to ask ourselves why we want to project

to subspaces.

The motivation, as with most things in Linear Algebra, is connected

to the solvability of Ax = b. Let’s take the situation where we have

too many equations, which means our coefficient matrix, A is “tall.”

We are particularly interested in such matrices because our datasets

in computer science tends to be of that shape.

In general, “tall” data matrices with real data tend to be full rank

because data points, which make up the rows of such matrices, tend

to be linearly independent due to measurement errors and statistical

fluctuations. The RREF of a “tall” full­rank matrix is I near the top,
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and zero rows below it. Such matrices, as coefficient matrices in

Ax = b, have solutions only if the RHS, b is in the column space of

A, which in general, it will not be.

What do we do in such a situation? We still want to solve the

system even when b ̸∈ C(A). In this case, the best we can do is to

find the vector b̂ in the column space that is closest to b, which will

be its projection onto C(A).

10.2 Projection to Subspace
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Fig. 10.2 Projecting the blue b onto the subspace that is the span of a1 and a2, the two

red vectors. The subspace is a plane, shown in light red. The projection, b̂ (in bright blue)

of b is in the subspace, and is therefore a linear combination of its basis vectors, a1 and a2,

shown in red.

In order to project to a subspace, we need to specify what the

subspace is, which we do in Linear Algebra by specifying the basis.

If our basis vectors are a1 and a2, the subspace onto which we are

projecting is a plane, as shown in Figure 10.2. Exactly as we did in

Eqn (10.1), we want the formulas for x̂, the length of the project, or

b̂, the projected vector and P , the projection matrix. In the case of a

plane with two basis vectors, we will have two lengths x̂1 and x̂2.

Since our projected vector b̂ is on the plane spanned by the basis

vectors, it is a linear combinations of them, and the coefficients of

the linear combination are what we call x̂1 and x̂2. Referring to
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Figure 10.2, where we are projecting the blue b onto the red plane

which is the span of a1 and a2, we have the projections along each

basis vector, b̂i = aix̂i. Arranging the basis vectors as the columns

of a matrix, we can write our linear combination for b̂ as:

A =





| |
a1 a2

| |



 , b̂ = A

[

x̂1

x̂2

]

= Ax̂ = b̂

which recovers the form of our favorite equation Ax = b. All we

need to do is to find x̂ for which we have the fact that the green

error vector e = b− b̂ is orthogonal to the red plane in Figure 10.2.

When a vector is perpendicular to a subspace, it is perpendicular to

every vector in it. In particular, e is orthogonal to every basis vector

ai, which means we have aT

i
e = 0. We can again write these two

equations (for i = 1 and 2) as a matrix equation: ATe = 0.

ATe = 0 =⇒ AT(b− b̂) = 0 =⇒ ATb = ATb̂ = ATAx̂

Recasting the last part of the previous equation in the form Ax = b,

we write our equation which will solve all our problems from now

on:

ATAx̂ = ATb =⇒ x̂ =
(

ATA
)−1

ATb (10.2)

What this equation tells us is that even if Ax = b does not have

a solution (because A is full­column­rank with inconsistent RHS),

multiplying both sides of it with AT magically makes it solvable, at

least in an approximate sense.

This approximation that gives us the best possible solution x̂ is, in

fact, identical to the least square minimization of the sum of squared

errors, if we were to do it in the old, calculus way. A numerical, itera­

tive minimization of the calculus kind may or may not converge, may

not converge to the global minimum, and may have computational

complexity issues. In the elegant world of Linear Algebra, it is only

a couple of matrix multiplications and an inversion.

Using our recently acquired knowledge of the four fundamental

space of A, we can immediately see that e ∈ N (AT). And, b̂ ∈
C(A) because it is a linear combination of the columns of A. A is

guaranteed to be full­rank because its columns span a subspace, and

Ax̂ = b̂ is guaranteed to have a unique solution.
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The Hat Matrix

As we saw, the projection matrix P takes b to its estimated, “hatted” counterpart, b̂. For
this reason, some textbooks and articles, especially the ones on statistics, when dealing
with linear regression, call the projection matrix P the hat matrix H .

While deriving the projection matrix, we also looked the error vector e = b− b̂ when

projecting b onto the column space, C(A) where b̂ = Pb was the projection. We can
then write

e = b− b̂ = b− Pb = (I − P )b

Some statisticians consider this a second projection matrix, P2 = I − P . Remem­
bering that e ∈ N (AT), P2 is the operator that will project a vector to the left null space
of A.

The last thing we need to do in this section is to write down the

projection matrix P such that Pb = b̂. Knowing that Ax̂ = b̂ and

using the formula for x̂ from Eqn (10.2), the projection matrix is:

P = A
(

ATA
)−1

AT (10.3)

10.2.1 Properties of Projection Matrix

The first property of the projection matrix is that applying it multiple

times on a vector is the same as applying it once. It makes sense from

the meaning of projection—once we project a vector onto another, the

projection is already collinear with it. Projecting a vector collinear

with another one onto the latter does not do anything. This property

is called idempotence and the projection matrix is idempotent, which

we can easily verify:

P = A
(

ATA
)

−1

AT =⇒ P 2 = A
(

ATA
)

−1

AT A
(

ATA
)

−1

AT

= A
(

(

ATA
)

−1

ATA
)

(

ATA
)

−1

AT

= AI
(

ATA
)

−1

AT = A
(

ATA
)

−1

AT

= P

Another property is that P has to be symmetric. This property

comes from the fact that dot product of two vectors is the same as the

dot product of one with the projection of the other onto it. Referring
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to Figure 10.1, it means:

aTb = aTb̂ = aTPb

On the other hand, a projected onto itself is, of course, a. Therefore,

aTb = (Pa)Tb̂ = aTP Tb

With the two expressions for aTb, we can equate them and write,

aTPb = aTP Tb =⇒ P = P T

Let’s verify if our P in Eqn (10.3) is indeed symmetric as it should

be.

P T =
(

A
(

ATA
)−1

AT

)T

(1) =
(

AT
)T

(

(

ATA
)−1

)T

AT

(2) = A
(

(

ATA
)T
)−1

AT

(3) = A
(

ATA
)−1

AT

= P

(10.4)

where we used (1) the product rule of transposes, (2) the fact that

the inverse of a transpose is the transpose of the inverse and (3) the

symmetry of ATA.

10.3 Meaning of Projection

The projection operation is a many­to­one mapping, as shown in

Figure 10.1, on its right panel. Since many vectors like b can be

projected onto a to have the same b̂ as shown, given b̂, we just cannot

figure out what b it came from. Such mappings are called injective

and they cannot be inverted. In other words, the projection operation

throws away some information.

In the world of Linear Algebra, the matrix corresponding to such

operations would be a rank­deficient one. When projecting to a

subspace defined by one vector, P is a rank­one matrix. For a

subspace of dimension two in R
n, it is a rank­two matrix. In general,
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for any subspace, P is singular, which is the reason why we cannot

apply the product rule for inverses to (ATA)−1.

P = A(ATA)−1AT ̸= AA−1AT−1
AT = II = I

We should not do this expansion and the product rule does not apply

here because A−1 is not defined, which was the whole point of

embarking on this projection trip to begin with.

What happens if we take the full space and try to project onto it? In

other words, we try to project a vector onto a “subspace” of dimension

n in R
n. In this case, we get a full­rank projection matrix, and the

expansion of the inverse above is indeed valid, and the projection

matrix really is I , which is an invertible matrix because every vector

gets “projected” onto itself. Note that the two properties we were

looking for in P are satisfied by I: It is idempotent because I2 = I

and of course IT = I .

For rank­deficient matrices, P is AA−1

Left, the left inverse multi­

plying on the right, almost like an attempt to get as close to I as

possible.

10.4 Linear Regression

One of the interesting applications of the idea of projection is linear

regression, where we try to model our data using linear functions.

Before going to real data with multiple variables and several obser­

vations, let’s start with a toy example.

10.4.1 Simple Linear Regression

When we have only one variable y depending linearly on another x,

we get the normal line fitting, which is called simple linear regres­

sion, as opposed to multiple linear regression when we have multiple

independent variables xi

Figure 10.3 shows a data table with just two variables and five

data points. We can think of y as a dependent variable, and x the

independent one on which y depends. The dependence is modeled as

a line, y = mx+c, which is the simple linear regression model. With

the data shown in Figure 10.3, we can easily type in the numbers and

get a “trendline” from our popular spreadsheet applications, which
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x y
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' = 1.2* 2 0.5

+! = 0.8

Fig. 10.3 An example of simple linear regression. The data points in the table on the left

are plotted in the chart on the right, and a “trendline” is estimated and drawn.

gives us the values of m = 1.2 and c = −0.5 as shown. Let’s look at

how these data points become a system of linear equations, and how

their solution then become a projection problem.

y = mx+ c

1 = m+ c

2 = 2m+ c

2 = 3m+ c

5 = 4m+ c

Ax = b A =









1 1
2 1
3 1
4 1









x =

[

m
c

]

b =









1
2
2
5









Since we are modeling our data as y = mx + c and we have five

(x, y) pairs, we get five equations as shown above, which we massage

into the Ax = b form. Notice how A has two columns, the first for

m and another one for c full of ones. If we had written our model as

y = c+mx, the column for the intercept c would have been the first

one.

As we can see, we have five equations, and if we were to do

Gauss­Jordan elimination on
[

A | b
]

, the third row would indicate

an inconsistent equation 0 = 1, and the system is not solvable, which

is fine by us at this point in our Linear Algebra journey. We will get

the best possible solution x̂, which will give us our best estimates

for the slope and the intercept as m̂ and ĉ. The steps are shown below.



186 Projection, Least Squares and Linear Regression

AT =

[

1 2 3 4
1 1 1 1

]

ATA =

[

30 10
10 4

]

∣

∣ATA
∣

∣ = 20

(

ATA
)−1

=

[

1
5

−1
2

−1
2

3
2

]

(

ATA
)−1

AT =

[

− 3
10

− 1
10

1
10

3
10

1 1
2

0 −1
2

]

x̂ =
(

ATA
)−1

ATb =

[

6
5

−1
2

]

=⇒ m̂ =
6

5
and ĉ = −

1

2

As we can see, our linear regression model becomes y = m̂x + ĉ =
1.2x − 0.5, same as the trendline that the spreadsheet application

computed in Figure 10.3.

We also have the error vector e = b − b̂. b is what we project

onto the column space, C(A) and b̂ = Pb is the projection. Let’s

go ahead and compute P and b̂ as well. Using the formula for the

projection matrix from Eqn (10.3), we get:

P = A
(

ATA
)−1

AT =













7
10

2
5

1
10

−1
5

2
5

3
10

1
5

1
10

1
10

1
5

3
10

2
5

−1
5

1
10

2
5

7
10













b̂ = Pb =













7
10

19
10

31
10

43
10













ê = b− b̂ =













3
10

1
10

−11
10

7
10













∥e∥ =
9

5

The norm of the error vector is the variance (∥e∥) in the data that is ex­

plained by the model. The total variance is computed independently

(using its formula from statistics) as σ2 = 2.25. The coefficient of

determination R2 is the fraction of the variance in the data that is

explained by our model, and it is 0.8, just as the trendline from the

spreadsheet application reports it in Figure 10.3.
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10.4.2 Multiple Linear Regression

When we have one dependent variable and one independent variable,

it is a simple linear regression (SLR). The statistical model in SLR is

a line, which means we are saying that the data points all should have

been on a line, but for some reason, they may wander and fluctuate;

therefore let’s look for the best fitting line.

When we have multiple independent variables, we have multiple

linear regression (MLR). For two independent variables, the model is

a plane, and we are trying to find the best plane that fits the data. For

n independent variables, the model is an n­dimensional subspace in

the coordinate space (not a vector subspace) that best describes the

data.
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Fig. 10.4 Example of a data matrix and its visualization in multiple linear regression.

In Figure 10.4, we have the first 26 rows of a dataset of 127

observations of weight, height, length of hair, age and sex, arranged

as a matrix. This so­called Young Adult dataset was used for an

unrelated research project. The visualization shows Height in the x
axis and Weight in y. The size of the point encodes Hair Len., which

we can think of on the z axis coming towards us. The bigger bubbles

indicate larger Hair Len., because they are closer to us. Finally the

color indicates the last column, Sex: Blue for F and orange for M.

Treating this as a teachable moment, we are going to switch from

our standard Ax = b notation to what is generally used in the
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Fig. 10.5 The standard notations used in multiple linear regression. Weight is the depen­

dent (or target or output) variable. Height and Hair Len. are the independent (or predictor

or input) variables.

literature in the context of MLR, as shown in Figure 10.5, color

coded for easy comprehension by our tired brains. Notice that in

the case of SLR, we had the model y = mx + c, with the intercept

introducing a column of ones in our A matrix. In MLR, we are going

to keep our intercept as the first parameter, and the column of ones

will be the first in our matrix, which we will now call X with the

fancy name Design Matrix. Our model is

y = β0+β1x1+β2x2 or Weight = β0+β1 Height+β2 Hair Len.

Following the same matrix equations, now with the new notations

as in Figure 10.5, we get the best estimate for the parameter vector

β̂, so that our model (coming from the 26 data points shown in

Figures 10.4 and 10.5) becomes:

Weight = β̂0 + β̂1 Height + β̂2 Hair Len.

= −74.06 + 0.814 Height − 0.151 Hair Len.

Although it is not easy to visualize the model and the points, even in

the simple intuitive three­dimensional space, we have attempted to

show this model in Figure 10.5. What is perhaps more important is

to understand the model in terms of its parameters: We can see that
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Fig. 10.6 Attempt to visualize a three dimensional MLR model for Weight. All three

panels show the model (which is a plane) and the associated data points, but from different

perspectives. The middle one shows the dependency of Weight on Height, and the last one

shows that on Hair Len.

β̂1 = 0.814, a positive number indicating that the weight increases as

the height increases. On the other hand, β̂2 = −0.151, which tells

us that the weight decreases as the hair length increases, which is

consistent with the fact that women tend to have longer hair and they

tend to be smaller and lighter.

As in the case of SLR, we could compute R2 and analyze whether

it is appropriate to have the hair length in the model and so on, which

is what we might expect to see in a book on data analytics. This

book, however, is written for Linear Algebra, and this is probably an

appropriate point to stop our work on its geometric aspects.
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Part IV

Advanced Topics



11
Eigenvalue Decomposition

and Diagonalization

Would it save you a lot of time if I just gave up and went

mad now?

—Douglas Adams

We have completed the basics of Linear Algebra. We may have

gone a bit beyond the basics in its algebraic and geometric aspects.

Now it is time to switch gears and look at some topics that have enor­

mous impact in computer science as well as more classical sciences.

Eigenvalues are eigenvectors are the entry point to such topics. Al­

though it appears in the “Advanced Topics” part of this book, eigen­

value decomposition and the associated discussion usually appear

toward the end of all undergraduate­level courses on Linear Algebra.

The word “eigen” is German, and it means own or characteristic.

We may, therefore, see some people calling the eigenvectors the

characteristic vectors, although it is not common. What is much

more common is to call the expression that gives us the eigenvalues

of a matrix its characteristic polynomial.
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11.1 Definition and Notation

We talked aboutAx = b as a transformationA ∈ R
m×n : Rn 7→ R

m.

If we consider square matrices A ∈ R
n×n, then the mapping is from

R
n to R

n. We can then say that the matrix A is a mapping from a

space to itself: It takes vectors in one space and transforms them to

other vectors in the same space.

Are there vectors in the space that get transformed to a scalar

multiple of itself? If there are, such vectors are called eigenvectors.

Writing this statement in symbols, we come up with their definition.

Eigenvectors and eigenvalues

Definition: For A ∈ R
n×n, s ∈ R

n ̸= 0 is an eigenvector if As = λs
with the eigenvalue λ.

A few points to note about eigenvalues and eigenvectors:

1. For A ∈ R
n×n, its eigenvalues do not have to be in R. In other

words, just because we have square matrix over the field of

reals (A ∈ R
n×n), we cannot assume that its eigenvalues are

real; it may have complex or imaginary eigenvalues.

2. Similarly, not all real matrices (A ∈ R
n×n) have real eigenvec­

tors.

3. If s is an eigenvector of A with an eigenvalue λ, so is any

scaled version of it (rs), with the same eigenvalue λ. Proof:

A(rs) = rAs = rλs = λ(rs)

4. As a special case, λ can be zero. When λ = 0, we have

As = 0 =⇒ s ∈ N (A). Note that s ̸= 0.

5. Although presented here in terms of matrices and vectors, the

ideas behind the eigenvectors came from other fields, such as

physics. For this reason, eigenvectors are defined as those

vectors that do not change their “direction” when A applies on

them.

In this book, however, for our own overly pedantic reasons,

we stay away from the notion of “direction” of vectors to the

extent possible.
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11.2 Examples of Eigenvalues and Eigenvectors

Before writing down a general method for finding eigenvalues and

eigenvectors, let’s look at a few examples.

11.2.1 Permutation Matrix

A permutation matrix is the one that shuffles the elements of a vec­

tor (or the rows of a matrix, as we saw earlier in §4.3.4, page 81,

when dealing with elementary matrices). In R
2, the only possible

permutation is r1 ´ r2 with the following A.

A =

[

0 1
1 0

]

=⇒ A

[

1
1

]

=

[

1
1

]

, A

[

1
−1

]

=

[

−1
1

]

= −1

[

1
−1

]

As we can see above, we have two eigenvectors for this matrix, with

eigenvalues 1 and −1.

11.2.2 Projection Matrix

We came across projection matrices P ∈ R
n×n, which take any

vector x ∈ R
n to its projection onto a subspace S ¢ R

n. If the vector

x that P is acting on is already in the subspace S , we know that its

projection is itself. Calling these vectors x∥, we can write:

Px∥ = x∥ = 1× x∥

So we have a whole bunch of eigenvectors x∥ in S . Furthermore, the

eigenvalues for these eigenvectors would be one, λ = 1.

We also know that if x is orthogonal to the subspace S , the projec­

tion will be the zero vector. Calling such vectors x§, we write:

Px§ = 0 = 0× x§

So x§ is an eigenvector with λ = 0. Note that for any matrix A,

we can always write A0 = 0, but 0 is not an eigenvector by our

definition above.
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11.2.3 Shear Matrix

A shear matrix transforms a square to a parallelogram1. Here is an

example of a horizontal shear matrix, as shown in Figure 11.1.

A =

[

1 0.5
0 1

]

=⇒ Aq1 = A

[

1
0

]

=

[

1
0

]

, Aq2 = A

[

0
1

]

=

[

0.5
1

]

When any vector is transformed by A, its first component is not

affected. A horizontal shear leaves the x axis alone, and therefore q1

is an eigenvector with eigenvalue λ = 1.

0.25 0.5 0.75 1 1.25 1.5 1.20.2520.520.752121.2521.521.752 0

0.25

0.5

0.75

1

1.25

20.25

20.5

"

#! =
1

0

#" =
0

1

#!

# =
1

0

#"

# =
0.5

1

The unit vectors transform as:

!! =
1

0
§ !!

" =
1

0

!# =
0

1
§ !#

" =
0.5

1

ó The Shear Matrix

) =
1 0.5

0 1

SHEARMATRIX

Fig. 11.1 An example shear matrix, showing a square being transformed into a parallelo­

gram.

11.2.4 Rotation Matrix

We looked at rotation matrices earlier, when talking about orthogonal

matrices. In R
2, the rotation matrix is

Qθ =

[

cos θ − sin θ
sin θ cos θ

]

1Although we state it like this, we should note that squares and parallelograms do not exist
in a vector space. They live in coordinate spaces, and this statement is an example of the
Notational Abuse, about which we complained in a box earlier. What we mean is that the
two vectors forming the sides of a unit square get transformed such that they form sides of
a parallelogram. We should perhaps eschew our adherence to this pedantic exactitude, now
that we are in the advanced section.
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For any nontrivial θ (which means θ ̸= 2kπ for integer k), we can see

that Qθ changes every single vector in R
2. We have no eigenvectors

for this matrix in R
2.

11.2.5 Differentiation

We can think of the set of all functions (of one variable, for instance)

as a vector space. It satisfies all the requisite properties. The calculus

operation of differentiation is a linear transformation in this space; it

satisfies both the homogeneity and additivity properties of linearity.

d

dx
eax = aeax =⇒ eax is an eigenvector with eigenvalue a

d2

dx2
sin x = − sin x =⇒ sin x is an eigenvector with eigenvalue − 1

11.3 Computing Eigenvalues and Finding Eigenvectors

In order to find the eigenvalues and then eigenvectors, we start from

their definitions.

As = λs =⇒ (A− λI)s = 0

Remembering that s ̸= 0, we can see that A − λI has a nontrivial

null space (to which the eigenvector s belongs). Since N (A − λI)
has nonzero vectors in it, A− λI is singular and its determinant has

to be zero, which gives us an equation for eigenvalues.

|A− λI| = 0

Thus, we get rid of s and end up with a polynomial in λ (when we

expand the determinant) equalling zero from which we can solve for

the possible values of λ. This polynomial is called the characteristic

polynomial of the matrix.

For a matrixA ∈ R
n×n, when we expand the determinant |A− λI|

using the Laplace formula in Eqn (3.5), we get a polynomial of order

n in λ, which should give us n roots, but not all of them may be real.

Once we have the eigenvalues, we can put them back in (A−λI) = 0
to find the eigenvectors s, which is the same as finding the null space

of (A− λI).
Let’s look at the examples from the previous section again to see

how we get the eigenvalues and eigenvectors.
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Permutation Matrix

Starting from the permutation matrix in R
2, here are the steps.

A =

[

0 1
1 0

]

|A− λI| = 0 =⇒
∣

∣

∣

∣

−λ 1
1 −λ

∣

∣

∣

∣

= 0

Expanding the determinant, λ2 − 1 = 0 =⇒ λ = ±1

As we saw earlier, we have two eigenvalues, 1 and −1. To find

the corresponding eigenvectors, we substitute the λ values in either

As = λs and solve, or, equivalently, find the null space of A− λI .

With λ = 1, (A− λI)s =

[

−1 1
1 −1

]

s = 0 =⇒ s =

[

1
1

]

With λ = −1, (A− λI)s =

[

1 1
1 1

]

s = 0 =⇒ s =

[

1
−1

]

Here, to find s, we are still using the column­picture of matrix mul­

tiplication and figuring out what linear combinations of the columns

of A − λI give the zero vector. As we can see, we get two dis­

tinct eigenvectors. We can also see that the eigenvectors are actually

orthogonal to each other. Note that any scaled versions of the eigen­

vectors are still eigenvectors with the same λ. For this reason, we

typically normalize them.

The fact that we got real eigenvalues and distinct and orthogonal

eigenvectors is not an accident. Real symmetric matrices (as our

A was, in the case of this permutation matrix) always have real

eigenvalues and a full set of orthogonal eigenvectors. They are the

best matrices to work with.

Projection Matrix

As a concrete example, let’s consider the projection matrix in R
3 that

projects vectors to the xy plane. Still calling it A, what A needs

to do is to leave the first two components alone and make the last

component zero.

A =

[

1 0 0
0 1 0
0 0 0

]

|A− λI| = 0 =⇒
∣

∣

∣

∣

∣

1− λ 0 0
0 1− λ 0
0 0 −λ

∣

∣

∣

∣

∣

= 0

Expanding the determinant, − λ(1− λ)2 = 0 =⇒ λ = 0, 1, 1
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Again, as we saw earlier, we have two eigenvalues, 0 and 1. But

note that λ = 1 is repeated. We state this fact more fancifully, that

the algebraic multiplicity of the eigenvalue (λ = 1) is two. Let’s go

ahead and try to find the corresponding eigenvectors.

With λ = 0, (A− λI)s =

[

1 0 0
0 1 0
0 0 0

]

s = 0 =⇒ s =

[

0
0
1

]

With λ = 1, (A− λI)s =

[

0 0 0
0 0 0
0 0 −1

]

s = 0 =⇒ s =

[

t1
t2
0

]

Where t1 and t2 are any real numbers. We see that we have a small

issue with the second eigenvalue with algebraic multiplicity two: The

eigenvectors corresponding to it span a subspace, which is called the

eigenspace associated with the second eigenvalue (λ = 1). The

dimension of this eigenspace is two, which is called its geometric

multiplicity. All eigenvalues have eigenspaces associated with them,

with geometric multiplicity of at least one.

What we need to do when we have an eigenvalue with a geometric

multiplicity greater than one is to select any full set of linearly inde­

pendent vectors that span its eigenspace. In other words, we take its

basis as the eigenvectors. In this particular case of projecting to the

xy plane, the perfect basis would be the unit vectors along x and y
directions. Putting it all together, here is the full solution:

λ1 = 0, s1 =





0
0
1



 λ2 = 1, s2 =





1
0
0



 , s3 =





0
1
0





Shear Matrix

Moving on to our next example,

A =

[

1 0.5
0 1

]

|A− λI| = 0 =⇒
∣

∣

∣

∣

1− λ 0.5
0 1− λ

∣

∣

∣

∣

= 0

Expanding the determinant, (1− λ)2 = 0 =⇒ λ = 1

As we saw earlier, we have a single eigenvalue of 1, but with an

algebraic multiplicity of two. The corresponding eigenvector is.

With λ = 1, (A− λI)s =

[

0 0.5
0 0

]

s = 0 =⇒ s =

[

1
0

]
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The eigenvalue has an algebraic multiplicity of two, and a geometric

multiplicity of one. We cannot find a full set of (real) eigenvectors,

and we are in trouble because for A ∈ R
n×n, we would like to have

n eigenvectors.

Rotation Matrix

We saw that there were no eigenvectors for a rotation matrix in R
2.

Let’s consider a π
2
­rotation, call the matrix A and attempt to find its

eigenvalues and eigenvectors.

Qθ =

[

cos θ − sin θ
sin θ cos θ

]

=

[

cos π
2

− sin π
2

sin π
2

cos π
2

]

=

[

0 −1
1 0

]

= A

|A− λI| = 0 =⇒
∣

∣

∣

∣

−λ −1
1 −λ

∣

∣

∣

∣

= 0

Expanding the determinant, λ2 + 1 = 0 =⇒ λ = ±i

We have no real eigenvalues. For the sake of completeness, we can

try to find the eigenvectors, although we do not expect to find any in

R
2.

With λ = i, (A− λI)s =

[

−i −1
1 −i

]

s = 0 =⇒ s =

[

1
−i

]

With λ = −i, (A− λI)s =

[

i −1
1 i

]

s = 0 =⇒ s =

[

1
i

]

Thus, if we allow ourselves to step into the field of complex numbers,

we can find eigenvectors of the rotation matrix s ∈ C
2. Physically,

the vector that is conserved during rotation is perpendicular to the

plane of rotation, which is why gyroscopes work the way they do.

How that fact corresponds to the actual eigenvectors of the matrix we

computed above, however, is a fairly tortured explanation.

11.4 Properties

The eigenvalues and eigenvectors provide deep insights into the struc­

ture of the matrix, and have properties related to the properties of the

matrix itself. Here are some of them with proofs, where possible.

It is worth our time to verify these properties on the examples we

worked out above.
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11.4.1 Eigenvalues

1. The sum of eigenvalues equals the trace of the matrix. For an

n× n matrix A =
[

aij
]

,

n
∑

i=1

λi = trace(A) =
n
∑

i=1

aii

Proof : Since the characteristic polynomial has roots λi, we can

write:

|A− λI| = (−1)n(λ− λ1)(λ− λ2) · · · (λ− λn)

where we constructed the RHS to have roots λi and to match the

coefficient of λn in the determinant on the LHS, which expands

to give a polynomial in λ with the coefficient of λn = (−1)n.

On the LHS, the coefficient of λn−1 is

(−1)n
n
∑

i=1

aii

On the RHS, the coefficient of λn−1 is

(−1)n
n
∑

i=1

λi

Since the LHS and RHS coefficients have to match, we see that

n
∑

i=1

λi =
n
∑

i=1

aii = trace(A)

which proves the property.

Although we proved it by comparing the coefficient of λn−1, it

is a lot easier to prove once we learn matrix similarity in the

next chapter. Note that we have to include λi in the summation

as many times as its algebraic multiplicity. Note also that for

A ∈ R
n×n, this property means that if A has any complex

eigenvalues, they should come in pairs of complex conjugates.

2. The product of eigenvalues equals the determinant of the ma­

trix. For an n× n matrix A,

n
∏

i=1

λi = |A|
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Proof : Again we start with the equality:

|A− λI| = (−1)n(λ− λ1)(λ− λ2) · · · (λ− λn)

Set λ = 0 to get

|A| = (−1)n(−1)nλ1λ2 · · ·λn = λ1λ2 · · ·λn =
n
∏

i=1

λi

A corollary of this property is that singular matrices have at

least one zero eigenvalue.

3. The eigenvalues of a real, symmetric matrix are real.

A ∈ R
n×n,AT = A =⇒ λi ∈ R

Proof : To prove this property, we have to step into the scary

field of complex numbers again. The strategy for proving

something is real is to assume that it is complex, and then show

that its conjugate (where we replace all i with −i) is the same

as itself, which shows that it has to be real. Following this

strategy, let’s say that λ ∈ C is a possibly complex eigenvalue

of A, and s ∈ C
n×n is the corresponding eigenvector. (Note

that in step (2) below, we take the complex conjugate, which is

defined as: (a+ ib)∗ = a− ib.)

(1) By the definition of eigenvalues, we have: As = λs

(2) Taking the complex conjugate, we get: A∗s∗ = λ∗s∗

(3) Since A is real A∗ = A. Therefore: As∗ = λ∗s∗

(4) Multiplying (1) on the left with s∗T: s∗TAs = s∗Tλs

(5) Flipping it around and reordering: λs∗Ts = s∗TAs

(6) Using the product rule of transposes: λs∗Ts =
(

ATs∗
)T

s

(7) Since A is symmetric: = (As∗)
T
s

(8) Using step (3) above: = λ∗s∗Ts

Finally, from steps (6) and (8), we get:

λs∗Ts = λ∗s∗Ts =⇒ (λ− λ∗)s∗Ts = 0 =⇒ λ = λ∗

since s∗Ts is the square of the norm ∥s∥2 (it is, for s ∈ C
n,

as we shall see in the next chapter) of an eigenvector, which

cannot be the zero vector 0. λ = λ∗ means λ ∈ R.
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4. The “opposite” of the previous property: The eigenvalues of a

real, antisymmetric (AKA skew symmetric) matrix are imagi­

nary.

A ∈ R
n×n,AT = −A =⇒ λi = iλ′

i, where λ′
i ∈ R

Proof : Identical to the previous proof, but with a negative sign

in step (7), showing λ = −λ∗.

5. If we multiply a matrix (A) by a scalar (α), then all its eigen­

values (λi) are multiplied by the same scalar.

Proof : As = λs =⇒ (αA)s = (αλ)s. That is it.

6. The eigenvalues of A + αI are λi + α, the eigenvalues of A

“shifted” by α.

Proof : If s is an eigenvector of A with the eigenvalue λ, we

have:

(A+ αI)s = As+ αs = λs+ αs = (λ+ α)s

which means s is an eigenvector of A+αI with the eigenvalue

λ+ α, which goes for every eigenvector/eigenvalue pair.

7. The eigenvalues of real, symmetric matrices are related to the

pivots in the row echelon form (REF, or U in the LU or PLU

decomposition): The number of positive eigenvalues is the

same as the number of positive pivots. Same goes for negative

ones too. We will leave this property, known as Sylvester’s

Law of Inertia, without proof.

11.4.2 Eigenvectors

1. The eigenvectors of a matrix2 corresponding to distinct eigen­

values are linearly independent.

A ∈ R
n×n with Asi = λisi, si ∈ R

n, for 0 < i f n

λi ̸= λj and aisi + ajsj = 0

=⇒ ai = aj = 0 for 0 < i, j f n, i ̸= j

2We use R (the real field, A ∈ R
n×n and s ∈ R

n) in the mathematical statement and proof
of this property for convenience and because of its relevance to computer science, but the
property applies to C as well.
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Sylvester’s Law of Inertia

The connection between the signs of the eigenvalues of a real, symmetric matrix and
its pivots is called Sylvester’s Law of Inertia. Inertia, in this context, is just the triplet
Inertia(A) = (p, n, z), with p− the number of positive eigenvalues, n, that of negative
ones and z the zeros. What the rule states is that these numbers are the same as numbers
of positive and negative pivots and the zero rows/columns (which, of course, is the
nullity). Note that this applies only if A ∈ R

n×n,AT = A.

The interesting corollary to this law is that the number of zero eigenvalues is the same
as the nullity of the matrix. Remembering that AT

AR
n×n and is symmetric for any

A ∈ R
m×n, we can extend the law to state that the rank of A (which is the same as the

rank of AT
A) is the number of nonzero eigenvalues of AT

A.

The nullity of A is the number of pivotless columns in A, which has to be the same as
the number of pivotless columns in A

T
A, Why? Because A

T
A and A have the same

rank, and the same number of columns n. Therefore, the nullity of A is the number of
zero eigenvalues of AT

A.

Proof : We need to prove that if si and sj are eigenvectors of

A with distinct eigenvalues λi and λj , we will not be able to

find nonzero ai and aj such that aisi + ajsj = 0.

(1) Starting from: aisi + ajsj = 0

(2) Multiplying on the left by A: aiAsi + ajAsj = 0

(3) Since si and sj are eigenvectors: aiλisi + ajλjsj = 0

(4) Multiplying (1) with λi, we get: aiλisi + ajλisj = 0

(5) Subtracting (3) from (4): aj(λi − λj)sj = 0

(6) Since λi ̸= λj and sj ̸= 0: aj = 0

(7) Putting aj in (1), we can show: ai = 0

The converse of this statement is not true: If the eigenvalues are

not distinct, the eigenvectors may still be linearly independent,

as in the case of the projection­matrix. Or the identity matrixIn,

which has the eigenvalue one repeated n times, but is already

diagonalized.

2. Real symmetric matrices have a full set of orthogonal eigen­

vectors.

A ∈ R
n×n with Asi = λisi, si ∈ R

n, for 0 < i f n

AT = A =⇒ si § sj for 0 < i, j f n, i ̸= j
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Proof :

(1) By the definition of eigenvalues: Asi = λisi

(2) Taking the dot product with sj : (Asi)
T
sj = λis

T

i sj

(3) Using the product rule of transposes: sTi A
Tsj = λis

T

i sj

(4) Since A is symmetric: sTi Asj = λis
T

i sj

(5) Since sj is an eigenvector of A: sTi λjsj = λis
T

i sj

(6) Reordering: λjs
T

i sj = λis
T

i sj

(7) Gathering terms: (λj − λi)s
T

i sj = 0

(8) Since λj ̸= λi =⇒ sTi sj = 0

(9) sTi sj = 0 =⇒ si § sj

It may happen that the eigenvalues are repeated. For instance,

the identity matrix I ∈ R
n×n has n repeated eigenvalues of 1.

Every vector in R
n×n is an eigenvector of I . In this case also,

we can choose an orthogonal set of vectors as the full set of

eigenvectors for the matrix.

In some cases, the eigenvectors may span a subspace (called

eigenspace, of course), as in the case of the projection matrix.

Here again, we can choose an orthogonal eigenbasis for the

eigenspace associated with the repeated eigenvalue.

3. The eigenvectors of A+ αI are the same as those of A.

Proof : As we already proved, if s is an eigenvector of A with

the eigenvalue λ,

(A+ αI)s = As+ αs = λs+ αs = (λ+ α)s

which should be proof enough. If not, it means s is an eigen­

vector of A+ αI with the eigenvalue λ+ α.

11.5 Unit Circles and Ellipses

One fair question we may have at this point is why we are doing all

this. It is all an academic exercise in intellectual acrobatics? We may

not be able to answer this question completely yet, but we can look

at a linear transformation and see what the eigenvalue analysis tells
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us about it. In the last chapter, we will see how these insights are

harnessed in statistical analyses.

Let’s start with an example A ∈ R
2×2, find its eigenvalues and

eigenvectors, and look at them in the coordinate space R
2.

A =
1

4

[

5 −
√
3

−
√
3 3

]

λ1 =
3

2
; s1 =

1

2

[√
3

−1

]

λ2 =
1

2
; s2 =

1

2

[

1√
3

]
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Fig. 11.2 Visualization of eigenvalues and eigenvectors: A transforms the unit circle into

a rotate ellipse. The eigenvalues specify the lengths of its major and minor axes. And the

eigenvectors specify the orientation of the axes.

As we can see from Figure 11.2, A takes the first basis vector

(q1, shown in red, dashed arrow) to its first column vector (a1 shown

bright red arrow): q1 7→ a1. Similarly for the second one as well,

q2 7→ a2, shown in various shades of blue. What happens to the

basis vectors happens to all vectors, and therefore, the unit circle in

the figure gets mapped to the ellipse, as shown.

Although we know about this unit­circle­to­ellipse business, from

the matrix A itself, we know very little else. Note that the vectors

to which the unit vectors transform (in qi 7→ ai) are nothing special;

they are on the ellipse somewhere. What we would like to know are

the details of the ellipse, like its size and orientation, which is exactly

what the eigenvalues and eigenvectors tell us. The eigenvalues λi

are the lengths of the major and minor axes of the ellipse and the

eigenvectors are the unit vectors along the axes. In Figure 11.2, the
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eigenvectors (s1 and s2) are shown in darker shades of red and blue,

while the corresponding eigenvalues are marked as the lengths of the

axes.

When we move on to higher dimensions, ellipses become ellip­

soids or hyper­ellipsoids, and the axes are their principal axes. The

mathematics of eigenanalysis still stays the same: We get the direc­

tions and lengths of the principal axes. And, if the matrix on which

we are performing the eigenanalysis happens to contain the covari­

ance of the variables in a dataset, then what the eigenanalysis gives

us are insights about the directions along which we can decompose

the covariance. If we sort the directions by the eigenvalues, we can

extract the direction for the highest variance, second highest variance

and so on. We will revisit this idea in more detail in one of our last

topics, the Principal Component Analysis, which is the mainstay of

dimensionality reduction in data science.

11.6 Diagonalization

We learned quite a bit about eigenvalues and eigenvectors by now. We

might still wonder why at this point. What is the point in learning all

this trivia about them? We hinted at its significance in data analytics

for dimensionality reduction. We have one more good reason; there

is a method to this madness. Once we have the eigenvectors of a

matrix, we can diagonalize it. And once we diagonalize, we can

immediately see how it can help in computing the powers of the

matrix. Why would we want to take powers of matrices? Because it

is the basis of modeling time­varying systems mathematically.

11.6.1 S and Λ

Suppose A ∈ R
n×n has its eigenvalues λi and the corresponding

eigenvectors si. Let’s construct two matrices, arranging the eigen­

vectors as columns, and the eigenvalues as diagonal elements:

S =





| | · · · |
s1 s2 · · · sn
| | · · · |



 Λ =











λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . . 0

0 0 · · · λn










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For simplicity, we may write S = [s] and Λ = [λ]. With these new

matrices, we arrive at the most important result from this chapter:

AS = SΛ

The LHS is a matrix multiplication, where the product matrix has

columns that are product of A and the corresponding column in S.

In other words, AS = A[si] = [Asi]. We think of the RHS using

the column picture of matrix multiplication again: The columns of

SΛ = [si]Λ are the linear combinations of si taken with the scaling

factors in the columns of Λ. But the scaling factors are merely λi in

the ith place. Therefore, the ith column in AS = SΛ is the same as

Asi = siλi, which is the now­familiar the definition of eigenvalues

and eigenvectors.

11.6.2 The Decomposition

If we know that S is invertible, we can go one step further and write:

If S−1 exists, AS = SΛ =⇒ A = SΛS−1

This is the famous eigenvalue decomposition of a real, square, diag­

onalizable matrix. Most matrices are diagonalizable over the field of

complex numbers.

11.6.3 Powers of A

As previously advertised, the reason for this decomposition is that it

gives us a way to express the powers of the matrix. For a square,

diagonalizable matrix A ∈ R
n×n, we can write,

A = SΛS−1 =⇒ A2 = SΛS−1SΛS−1 = SΛ(S−1S)ΛS−1

= SΛIΛS−1 = SΛΛS−1

A2 = SΛ2S−1

Similarly, we can easily see that Ak = SΛkS−1. While this result

may look fairly mundane, let’s think about a medium­sized matrix,

say 100×100, and k = 60. Imagine the number of operations required

to computeA60, which is probably of the order of 60×1003 = 6×107

(for the 60 matrix multiplications). But if we have the decomposition,

taking the 60th power of Λ is trivial, merely 100 exponentiations. The

two matrix multiplications cost about 2× 1003 = 2× 106 operations
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Invertibility vs. Diagonalizability

Not all invertible matrices can be diganolized. We saw an example earlier. The shear
matrix has an inverse that is easily written down.:

A =

[

1 0.5
0 1

]

A
−1 =

[

1 −0.5
0 1

]

But A has only one eigenvector, and is not diagonalizable.

Not all diagonalizable matrices are invertible. We already know that the projection
matrix is not invertible because it destroys information; it is a many­to­one (or injective)
mapping. But it can be diagonalized.

A =





1 0 0
0 1 0
0 0 0



 S =





0 1 0
0 0 1
1 0 0



 S
−1 =





0 0 1
1 0 0
0 1 0



 = S
T

A = SΛS
−1

In fact, A is already a diagonal matrix: It has nonzero elements only along its diagonal.

We know the condition for A to be invertible, or for A
−1 to exist. Let’s state it

several different ways, as a means to remind ourselves. A is invertible if:

• |A| ≠ 0. Otherwise, as Eqn (5.1) clearly shows, we cannot compute A
−1

because |A| appears in the denominator.

• N (A) = 0, its null space contains only the zero vector. Otherwise, for some x,
we have Ax = 0, and there is no way we can invert it to go from 0 to x.

• λi ̸= 0, all its eigenvalues are nonzero. Otherwise, |A|, being the product of
eigenvalues, would be zero.

• λi ̸= 0, all its eigenvalues are nonzero. Another reason, otherwise, for the zero
λ, we have Ax = 0, which implies the existence of a nontrivial null space.

The diagonalizability of A is tested using the invertibility of its eigenvector matrix S.
Although this point is probably not critical for our view of Linear Algebra as it applies to
computer science, we might as well state it here. For a matrix to be non­diagonalizable,
the algebraic multiplicity of one of its eigenvalues (the number of times it is repeated)
has to be greater than its geometric multiplicity (the number of associated eigenvectors),
which means the characteristic polynomial needs to have repeated roots to begin with.
The roots are repeated if the discriminant of the polynomial (similar to b2 − 4ac in the
quadratic case) is zero. The discriminant being a continuous function of the coefficients
of the polynomial, which are the elements of the matrix, it being zero happens with
a frequency of the order of zero. But the roots being complex happens half the time
because the discriminant is less than zero half the time.

and the exponentiations of the 100 diagonal elements, a negligible

amount. The overall saving in computational time, therefore, is

roughly 30.

The best algorithms for matrix multiplications take about n2.3 op­

erations. If we are computing the kth power of A ∈ R
n×n, therefore,
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it would cost us kn2.3 operations. But with diagonalization, it will

cost us n exponentiations of the diagonal elements of Λ and two

multiplications, or a total of n + 2n2.3 operations, which implies a

reduction of kn2.3

n+2n2.3 ≈ k
2

for large n.

Since we have any power of A being expressed as, essentially,

powers of Λ, we can make the same statement about polynomials of

A.

11.6.4 Inverse of A

Since we have a product for A, we can take its inverse using the

product rule of inverses.

A−1 =
(

SΛS−1
)

−1
=
(

S−1
)

−1
Λ−1S−1 = SΛ−1S−1

Since Λ is a diagonal matrix with λi along the diagonal, its inverse

is another diagonal matrix with the elements equal to the reciprocal

of λ1. Therefore, A−1 has the same eigenvectors si as A, with

eigenvalues equal to the reciprocals of the eigenvalues of A: 1
λ i

. It

can be seen even more directly as follows:

Asi = λisi =⇒ si = λiA
−1si =⇒ A−1si =

1

λ i
si

Enough said.

Since A−1 = SΛ−1S−1, we can see that Ak = SΛkS−1 holds

for k < 0 as well. Extrapolating even further, through the Taylor

series expansion, we can compute entities like eA (matrix exponenti­

ation), which are essential in solving differential equations—a topic

we consider beyond the scope of this book.

11.6.5 Difference Equations

In building mathematical models of systems that evolve in time, we

may come across the situation where the state of the system at any time

step depends on the state at the previous step. If all the parameters

specifying the state can be written as a vector, we may be able to

write the time evolution as xk+1 = Axk.

If we know the initial conditions at time step zero, we can write:

xk = Axk−1 = A2xk−2 = · · · = Akx0



Diagonalization 209

And, if we have the eigenvalue decomposition of A = SΛS−1, we

know that we can compute the matrix raised to the power k without

worrying too much about the computational cost.

11.6.6 Eigenbasis

If we have a full set of real eigenvectors for A ∈ R
n×n, we can use

them as a basis forRn, which we will call the eigenbasis. We can then

express any vector x0 ∈ R
n as a linear combination of the eigenbasis

vectors, remembering what we learned about changing the bases of

vectors earlier in §7.2 (page 128).

x0 = s1c1 + s2c2 + · · ·+ sncn =
n
∑

i=1

sici = Sc

where ci are the coordinates of x in the eigenbasis. (We wrote the

scalar after the vector in the summation so that the matrix product is

easier to spot.)

Once we have the vector x0 in the eigenbasis of A, we can do

simplify the multiplications of the powers of A with x as in the

following:

Ax0 = A

n
∑

i=1

sici =
n
∑

i=1

Asici =
n
∑

i=1

λisici = SΛc

Akx0 =
n
∑

i=1

λk
i sici = SΛkc

Why does this matter? Why use the eigenbasis? Let’s think of A

as the transformation encoding the time evolution of a system with

xk its state at a given step (or iteration, or a point in time). Given

the state of the system at one step, we evolve it to the next step by

multiplying with A to get xk+1 = Axk.

Knowing the initial state x0 and, more importantly, the transition

matrix A, what can we say about the stability of the system? We can

say the following:

lim
k→∞

xk = lim
k→∞

Akx0 =
n
∑

i=1,|λi|>1

λk
i sici
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In other words, in the sum that makes up xk, only those eigenvalues

(whether they are real or complex) whose absolute value is greater

than 1 matter; they are the only ones that will survive when we take

the limit k → ∞.

11.7 Fibonacci Numbers

As an example of how this idea of the powers of a matrix applies

to a real­world problem, let’s look at the Fibonacci numbers. This

problem may be academic in nature, but it does show the kind of

thinking that goes into transforming a problem to bring it into the

domain of eigenvalues.

The famous Fibonacci sequence appears in nature in unexpected

ways, and is heavily used in mathematics and, closer to home, in

computer science. The Wikipedia entry on it has a comprehensive

listing of its properties and interesting facts.

To see how we connect the eigenvalue computation with Fibonacci

numbers, let’s start by writing them down. The sequence of num­

bers is: 0, 1, 1, 2, 3, 5, 8, 13, · · · : Each number in the sequence (af­

ter the first two) is the sum of the previous two. Calling them

f0, f1, f2, · · · , fk, · · · , we can say that fk+2 = fk+1 + fk. This is

what we might call a second­order difference equation because each

number depends on the previous two. We do not see any vector or

matrix here, do we? In order to reveal them, let’s make a vector out

of two Fibonacci numbers:

xk =

[

fk+1

fk

]

=⇒ xk+1 =

[

fk+2

fk+1

]

=

[

fk+1 + fk
fk+1

]

which gives us a chance to write it as matrix equation, and connect

xk to x0:

xk+1 =

[

1 1
1 0

] [

fk+1

fk

]

=

[

1 1
1 0

]

xk = Axk = Ak+1x0

From the Fibonacci sequence, we can see that the numbers are

growing, and we may want to find out how fast they are growing.

Or maybe we want to have an approximation for the kth Fibonacci

number. The first question about the growth rate is directly answered

by the eigenvalues of A, and the second one by the eigenbasis repre­

sentation of xk.

https://en.wikipedia.org/wiki/Fibonacci_number
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Let’s first compute the eigenvalues.

A =

[

1 1
1 0

]

A− λI =

[

1− λ 1
1 −λ

]

|A− λI| = 0 =⇒ −(1− λ)λ− 1 = 0 or λ2 − λ− 1 = 0

λ1 =
1 +

√
5

2
≈ 1.618 λ2 =

1−
√
5

2
≈ −0.618

Since |λ1| > 1 and |λ2| < 1, it is the first eigenvalue that will

dominate large Fibonacci numbers. In particular, fk+1 is going to be

about 1.618 times bigger than fk as k → ∞.

Let’s now try to find an equation, a closed­form formula, for fk.

We will start with the eigenvectors, express x0 in the eigenbasis

and evolve it to xk. The eigenvectors of A are the solutions to

(A− λI)s = 0.

(A− λI)s = 0 =⇒
[

1− λ 1
1 −λ

]

s = 0

=⇒ s =

[

λ

1

]

for λ = λ1, λ2

x0 is a linear combination of s1 and s2.

x0 = c1s1 + c2s2 =⇒
[

1
0

]

= c1

[

λ1

1

]

+ c2

[

λ2

1

]

After a bit of algebra, we will get:

c1 =
1√
5
, c1 = − 1√

5

We know how the evolution of x:

xk = Akx0 = Ak(c1s1 + c2s2) = c1λ
k
1s1 + c2λ

k
2s2 =

[

fk+1

fk

]

We can now read the second element in xk as fk:

[

fk+1

fk

]

= c1λ
k
1

[

λ1

1

]

+ c2λ
k
2

[

λ2

1

]

=⇒ fk = c1λ
k
1 + c2λ

k
2



212 Eigenvalue Decomposition and Diagonalization

Knowing that the second term vanishes for large k (because |λ2| =
0.618 < 1) , we finally get an expression for fk:

fk ≈ c1λ
k
1 =

1√
5

(

1 +
√
5

2

)k

= f (approx)

k

How good this approximation is is shown in Table 11.1, which shows

that the approximation is stunningly accurate. By the time we reach

k = 11, the error is about 25 parts in a million.

Table 11.1 Fibonacci numbers (fk) vs. its approximation (f
(approx)

k )

k fk f
(approx)

k
k fk f

(approx)

k
k fk f

(approx)

k

0 0 0.45 4 3 3.07 8 21 21.01
1 1 0.72 5 5 4.96 9 34 33.99
2 1 1.17 6 8 8.02 10 55 55.00
3 2 1.89 7 13 12.98 11 89 89.00

11.8 Applications of Eigenvalues and Eigenvectors

The ideas behind eigenvalue decomposition has a multitude of ap­

plications, especially in physics and other physical sciences. In our

domain of computer science, the Google Page Rank algorithm, de­

scribed in its own box in the next chapter, is a brilliant success story

of this line of thinking. Since this chapter is in the advanced part of

this book, we do not list the applications here, but rather note that a

good starting point to explore would be the Wikipedia page.

https://en.wikipedia.org/wiki/Eigenvalues_and_eigenvectors
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11.9 Big Recap: The Story So Far

As we saw multiple times, everything in Linear Algebra is connected

to everything else. It is a big and beautiful jigsaw puzzle. Although

we chose to learn it in the particular sequence that we did, we could

have started out exploration any one of its corner pieces. Let’s look at

what we have learned, this time from the perspective of the interplay

between the ranks and shapes of matrices and the four fundamental

spaces. As we shall see, this summary will also tells more about

the process of solving equations and projecting onto column (or even

row) spaces.
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Fig. 11.3 Recap of the four fundamental spaced defined by a matrix.

Given a matrix A ∈ R
m×n, we have a mapping from R

n to R
m, as

shown in Figure 11.3, where the input space is shown in green while

the output space is red. Ax = b says that b is a linear combination of

the columns of A. All such linear combinations are in C(A), which

is a subspace of Rm.

It is true that multiple vectors x ∈ R
n will get mapped to b ∈ C(A).

But the mapping from the row space C(AT) to the column space C(A)
is one­to­one. In other words, if we take any vector b ∈ C(A), there

is one and only one vector x ∈ R
n such that Ax = b. Why is that?

Let’s prove it rather formally.



214 Eigenvalue Decomposition and Diagonalization

Proof : To prove this fact, we will assume its negative and establish

that leads to a contradiction. Let’s assume that we have two nonzero

vectors x1,x2 ∈ C(AT),x1 ̸= x2 such that Ax1 = b and Ax2 = b.

(1) Assumption: Ax1 = b, Ax1 = b

(2) Subtracting, we get: A(x1 − x2) = 0

(3) A(x1 − x2) = 0 =⇒ x1 − x2 ∈ N (A)

(4) x1 ̸= x2 =⇒ x1 − x2 ̸= 0

(5) Closure property of C(AT) :

x1,x2 ∈ C(AT) =⇒ x1 − x2 ∈ C(AT)

(6) x1 − x2 ∈ C(AT) and

x1 − x2 ∈ N (A) =⇒ x1 − x2 ∈ C(AT) ∩N (A)

(7) C(AT) § N (A) =⇒ x1 − x2 = 0

The statement (7) says that since C(AT) and N (A) are orthogonal

to each other, the only vector in both is the zero vector. As we can

see, we statements (4) and (7) both of which cannot be true at the

same time. Therefore, for every b ∈ C(A) such that Ax = b, there is

only one vector x ∈ C(AT) that satisfies the equation. The mapping

C(AT) 7→ C(A) is one­to­one. Intuitively, since we have r linearly

independent columns (the pivot columns) that span C(A), any one

nonzero linear combination (
∑r

i=1 xiai) should have a unique set of

coefficients xi, and these coefficients will form a vector x ∈ C(AT).
If they did not, where would the vector x be, in the input space?

11.9.1 Full­Rank Square Matrices

When we have a full rank, square matrix A ∈ R
n×n, rank(A) = n,

the row space is all of Rn. So is the column space. The mapping

A : Rn 7→ R
n, which is the same as A : C(AT) 7→ C(A), is one­

to­one. If we are given any b in Ax = b, we can always find the

correspondingx by the inverse mapping,A−1, which is guaranteed to

exist. In terms of the four fundamental spaces, the picture looks like

what is depicted in Figure 11.4. Note that both N (A) and N (AT)
contain only the zero vector.

Solving Ax = b is the same as finding the inverse A−1, either

of which can be done using Gauss­Jordan elimination. This is what
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Fig. 11.4 Recap of the four fundamental spaced defined by a full­rank, square matrix.

Notice how A−1 is a mapping from C(A) back to C(AT).

people mean by “n equations in n unknowns means you can solve.”

As we shall see again soon, they should be saying “n independent

and consistent equations in n unknowns means we can find a unique

solution.”

11.9.2 Full­Column­Rank, Tall Matrices

Figure 11.5 shows the four fundamental subspaces of a full­column­

rank, tall matrix. Notice that the null space, N (A) is trivial (meaning,

it contains only the zero vector), and the row space is all of the

input space: C(AT) = R
n. What this means is that any vector in

the input space will be mapped to a unique vector in C(A). Why

unique? Because in Ax = b, b ∈ R
m is a linear combination of

the columns of A and, as we saw earlier, any linear combination of

linearly independent vectors is unique. In other words, given a set of

n linearly independent vectors ai and scalars xi, xi

∑

ai is a unique

vector. And, of course, this sum is exactly what Ax is.

The column space, C(A), however, does not cover all of the output

space R
m. Therefore, if we take a vector b ∈ R

m such that it is not

in the column space (b /∈ C(A)), it is not a linear combination of

the columns of A, and there is no solution to x such that Ax = b.

The system of linear equations is inconsistent. If we do Gaussian

Elimination on the augmented matrix
[

A | b
]

, we will get at least
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Fig. 11.5 Recap of the four fundamental spaced defined by a full­column­rank, tall matrix.

Here, A
−1

Left is the one­to­one mapping C(A) 7→ C(AT).

one zero equal to nonzero row, indicating this fact. For Ax = b, for

a general b ∈ R
m: No solution if b /∈ C(A).

We also saw that we can get to the best approximation to the

solution, x̂, by projecting b onto C(A) as b̂, in which case Ax̂ = b̂

has a unique solution because b̂ ∈ C(A) by construction (projection).

This process of projection is considered least square minimization

because when b̂ is the vector in C(A) “closest” to b. In other words,

the error vector b− b̂ has the smallest Euclidean norm.

We now have a recipe for finding the best approximation: Project

b onto C(A) as b̂ = A
(

ATA
)

−1
ATb and solve Ax̂ = b̂ and we

get Ax̂ = b̂ =⇒ Ax̂ = A
(

ATA
)

−1
ATb. Notice that this last

equation states that some linear combination of the columns of A is

the same as some other linear combination of the same. Since we

know that the linear combinations of linearly independent vectors are

unique, we conclude:

x̂ =
(

ATA
)

−1
ATb

We also saw, in our discussion earlier that even when Ax = b is

not solvable (with a full­column­rank, tall A), ATAx̂ = ATb has
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solutions, which also gives

x̂ =
(

ATA
)

−1
ATb

Finally, remember the left inverse, which is defined for a full­

column­rank, tall matrix? A−1

Left = (ATA)−1AT with A−1

LeftA = I .

Therefore, when we have Ax = b and A is full­column­rank, tall

matrix, we can write

A−1

LeftAx̂ = A−1

Leftb =⇒ x̂ = A−1

Leftb = x̂ =
(

ATA
)

−1
ATb

Why do we put a hat on x there? Because we know that the system

Ax = b does not have solutions, in general, unless b ∈ C(A). What

we are getting is the best approximation to the solution, which is

indeed the same as projecting b on to C(A) and solving. It is also the

same as the least square solution.

In summary, A ∈ R
m×n, rank(A) = n < m =⇒ |A| and A−1

are not defined, and we do not have (in general) solutions to Ax = b.

We do have a least­square solution, which is the best approximation,

and it can be arrived at in a variety of ways, all of which give the

same answer. Although unrelated to solving the system of equations,

keep in mind that an eigenanalysis is not possible because the matrix

A is not a square one.

11.9.3 Full­Row­Rank, Wide Matrices

A full­row­rank, wide matrix is indeed the transpose of a full­column­

rank, tall matrix. In terms of the four fundamental spaces, as shown

in Figure 11.6, it is roughly equivalent to swapping the input and

output spaces. We might expect to see the right inverse in the place

of left inverse as the mapping from the column space back to the row

space. Let’s see how it comes about.

For a full­row­rank, wide matrix, its column space is all of the

output space: C(A) = R
n. (See Figure 11.6.) The row space is a

subspace of the input space: C(AT) ¢ R
n and there is a null space

N (A), which contains all vectors that are orthogonal to the ones in

the row space.

The mapping A : Rn 7→ R
m is many­to­one: multiple vectors in

the input space map to the same output vector. However, the mapping

from the row space to the column space, A : C(AT) 7→ C(A), is still
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Fig. 11.6 Recap of the four fundamental spaced defined by a full­row­rank, wide matrix,

showing A
−1

Reft : C(A) 7→ C(AT).

one­to­one, for the reasons of uniqueness of linear combinations we

expounded on in the previous case. In other words, given any vector

b ∈ C(A) (which is the same as saying b ∈ R
m because C(A)−R

m),

there is a unique vector x ∈ C(AT) such that Ax = b.

Why Many­to­One? We know the answer already: We do not have

enough equations to constrain the system to a single solution. If we

have one equation (a11x+a12y = b1) in two variables, we have a line

and any point (x, y) in the line will map to the same b1.
We can also see this geometrically. Let’s take a vector x ∈ C(AT),

which maps to b ∈ C(A) through Ax = b. Now take another vector

in the input space that is in the null space, N (A). Remembering that

the null space is the orthogonal complement of the row space, we

call this vector x§ ∈ N (A). We know, by the definition of N (A)
as the solution set of Ax = 0, Ax§ = 0. Therefore, Ax+Ax§ =
b+ 0 = b or, A(x+ x§) = b. In other words, the moment we have

one vector x ∈ C(AT) such that Ax = b, we can add any vector

x§ ∈ N (A) to it and the sum x+ x§ will still map to the same b.

One point to note is that the sum x+ x§ will always have a norm

greater than or equal to that of x: ∥x + x§∥ g ∥x∥ because x and

x§ for two sides of a right­angled triangle and the sum x+x§ is the
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hypotenuse. In other words, the unique solution x is the minimum­

norm solution of Ax = b.

How to Find the Unique Part? We actually know the answer to this

one also. When we found the complete solution of Ax = b, where

we have free variables, we wrote it as xp+ t1xs1+ t2xs2+ · · · , where

xp was the particular solution and xsi were the special solutions (of

which we had as many as the number of free variables). Now we can

see that xp is, in fact, the part of the solution that is in the row space.

Any linear combination of the n− r special solutions (which form a

basis for the null space) would indeed be in the null space, and that

is what is denoted as x§ in Figure 11.6. We do see how all these

different views are coming together beautifully, don’t we?

One way of finding the particular solution is to perform Gaussian

Elimination on the augmented matrix to locate the pivotless columns

which point to the free variables. We then solve the system after

setting the free variables to zero. Now we have r equations and r
unknowns because we have set the n− r free variables to zero. The

unique solution to this system is the particular solution xp.

Thinking geometrically, we first notice that the complete solution

is the sum x + x§. If we project this sum to the row space C(AT),
it becomes just x because x§ is orthogonal to C(AT). When we

did the projection, we wrote the matrix that projects onto C(A) as

P = A
(

ATA
)

−1
AT. The row space C(AT) is, as the symbol

indicates, the column space of AT and the matrix that would project

onto it, Pr would be just P , but with A replaced by AT. Thus,

Pr = AT
(

AAT
)

−1
A (where we also made use of the fact that the

transpose of AT is A).

Let’s say we found a solution x′ = x + x§ such that Ax′ = b.

x = Prx
′ = AT

(

AAT
)

−1
Ax′. But Ax′ = b, which means we

get the minimum­norm solution x = AT
(

AAT
)

−1
b.

Let’s remind ourselves that what the right inverse is. A is a full­

row­rank, wide matrix. Therefore, ATA is full rank and invertible,

which means AAT
(

AAT
)

−1
= I =⇒ A−1

Reft = AT
(

AAT
)

−1
.

Now we see that A−1

Reft is the mapping that will take any vector

b ∈ C(A) and give us the unique vector x ∈ C(AT) such that

Ax = b. Beautifully symmetric, isn’t it? This is indicated in

Figure 11.6.
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As we went through these cases of full­rank matrices, square, tall

or wide, we saw how solving the system of linear equations using

Gaussian Elimination is related to the picture of the four fundamental

subspaces, and how the mapping between the row space and the

column space was one­to­one, which could be inverted. We further

saw that the left and right inverses were in fact these mappings from

C(A) to C(AT). In the case of a full­rank, square matrix, they indeed

reduce to he double­sided inverse, A−1.

11.9.4 Any General Matrix
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Fig. 11.7 The four fundamental spaced defined by a general rank­devicient matrix. Here,

the newly defined pseaudo inverse maps C(A) back to C(AT).

We have not yet dealt with rank­deficient matrices. Even if the

matrix is rank deficient, the mapping between the row space and the

column space is one­to­one and invertible: If Ax = b, then the

mapping A : C(AT) 7→ C(A) is invertible such that there is some

pseudo­inverse A+ : C(A) 7→ C(AT). But we do not yet have all the

tools necessary to unearth this elusive inverse yet. We need to learn

Singular Value Decomposition, which we will go through in the very

last chapter of this book. Here, let’s do a quick preview, which may

be useful.
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In this chapter, we learned that eigenanalysis is possible only for

square matrices. It works best for symmetric matrices that are di­

agonalizable. The “thin” version of Singular Value Decomposition,

which is closely related to the eigenanalysis of ATA or AAT, works

for all matrices because these products are symmetric. What it gives

is, in fact, a decomposition of the form:

A ∈ R
m×n SVD−−→ A = ÛΣ̂V̂ T

Û ∈ R
m×r, Σ̂ ∈ R

r×r, V̂ ∈ R
r×n

Σ̂ is a diagonal matrix, with positive values along the main diagonal,

starting from σ1 all the way to σr, where r = rank(A), with the rest

of the elements all zero.

In terms of the four fundamental spaces, what SVD is telling

us is that there is a special orthonormal basis in the row space,

{v1,v1, · · · ,vr}, that maps to an orthonormal basis in the column

space {u1,u1, · · · ,ur}. The very fact that there are such bases is

already remarkable. The fact that these bases can be unearthed is

even more so. We will later see how the bases matrices Û and V̂ as

well as the matrix of singular values Σ̂. For our purposes here, let’s

note that following:

Σ̂ =









σ1 0 · · · 0
0 σ2 · · · ...

...
...

. . .
...

0 0 · · · σr









=⇒ Σ̂−1 =









1
σ1

0 · · · 0

0 1
σ2

· · · ...

...
...

. . .
...

0 0 · · · 1
σr









With this, we now define the pseudo­inverse A+ = V̂ Σ̂−1ÛT. Note

that A+ ∈ R
n×m.

If we knew that AA+A = A, we could do the following:

AA+Ax = Ax = b

AA+ (Ax) = Ax = b

AA+b = Ax = b

Since we already have Ax = b, we can say (using the arguments

about the uniqueness of linear combinations of linearly independent

vectors again) that A+b = x, which is the inverse transformation

from C(A) to C(AT). We have to verify that AA+A = A, which



222 Eigenvalue Decomposition and Diagonalization

is a property of the pseudo­inverse. Furthermore, A+ reduces to

A−1,A−1

Left or A−1

Reft for full­rank square, full­column­rank and full­

row­rank matrices respectively. As we defined it here, we do not have

enough knowledge to do prove it yet, but we will prove it in the last

chapter, considering the full SVD (rather than the “thin” version we

used in our definition of the pseudo­inverse A+ above).

The only thing left to do now is to look at the picture in Figure 11.7

and marvel at its beauty, elegance and completeness. In some sense,

we have come full circle. We can now appreciate how the algebraic

notion of solving equations (using Gauss­Jordan elimination, for in­

stance) is related to the geometric view of four fundamental spaces,

and the more abstract ideas of mappings and their inversions.
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12
Special Matrices,

Similarity and Algorithms

The surest way to corrupt a youth is to instruct him to hold

in higher esteem those who think alike than those who

think differently.

—Friedrich Nietzsche

In the last chapter, we saw how the properties of eigenvalues and

eigenvectors are related to the characteristics of the matrices. We

looked at real, symmetric matrices and studied their eigen­analysis

to some extent. In this chapter, we will look at some other special

matrices and their eigenvalues and vectors. Let’s start with another

look at symmetric matrices.

12.1 Real, Symmetric Matrices

Real, symmetric matrices (A ∈ R
n×n,A = AT) have real eigenval­

ues and orthogonal eigenvectors, as we proved in some painstaking

detail in the previous chapter (Item §3, page 198). Here are two

theorems on such matrices.
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12.1.1 Spectral Theorem

As we (almost) saw, a real symmetric matrix has real, orthonormal

(which people may call orthogonal at times) eigenvectors (restricting

ourselves to R again). Using the symbol Q for orthonormal matri­

ces, and knowing that they are invertible, with the inverse being the

transpose, we can state our eigenvalue decomposition as:

A = SΛS−1 ⇐⇒ A = QΛQ−1 = QΛQT

Knowing that Q is a matrix with columns qi (which we may write as

Q = [qi]), we can expand the product to read:

A =
n

∑

1

λiqiq
T

i (12.1)

This expansion is possible because Λ has only diagonal entries λi

and qi § qj =⇒ qT

i qj = 0 if i ̸= j. Looking at each term in the

expansion, we can make the following remarks:

• Each term has a projection matrix qiq
T

i .

• It is a projection to the eigenspace of the ith eigenvector.

• Each eigenspace is one­dimensional, being the span of just one

vector qi.

• Consequently, each projection matrix is a rank­one matrix.

Eqn (12.1) is the spectral theorem, stating that any real, symmetric

matrix can be decomposed as a sum of projection matrices of rank

one, scaled by the eigenvalue. The eigenvalue is considered the

spectrum. Each component in the term is akin to a pure component

of the matrix, much like white light has a spectrum of pure primary

colors.

12.1.2 Sylvester’s Law of Inertia

Now that we are listing theorems, we have another one that goes by

the physics­inspired name, the Law of Inertia (attributed to James

Joseph Sylvester, not the brawny movie star). We stated it earlier:

For real, symmetric matrices, the number of positive eigenvalues is

the same as the number of positive pivots. Similarly, the negative
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pivots and negative eigenvalues are equal in number. The proof of

this theorem (which we will not attempt) involves the concept of

similarity of matrices, which is our topic later in this chapter. We

will, however, state the theorem more formally.

We have a symmetric matrix A ∈ R
n×n so that AT = A, with

Asi = λisi. The Reduced Echelon Form (REF) of A is R, with the

pivot in the ith row is ri. Then, Sylvester’s Law of Inertia states that:

Count(λi > 0) = Count(ri > 0)

Count(λi = 0) = Count(ri = 0)

Count(λi < 0) = Count(ri < 0)

Note that the REF in this law is the result of Gaussian elimination,

done with no scaling of the rows. It is not the RREF from Gauss­

Jordan elimination, which makes all pivots one by scaling rows.

12.2 Hermitian Matrices

Some of the properties of real, symmetric matrices we stated so far

apply also to complex matrices, with one important caveat: We need

to redefine what “transpose” means for A ∈ C
n×n. Let’s expand our

field to complex numbers and see how the properties and their proofs

holds up. But before doing that, we have to state what “transpose”

means in C.

12.2.1 Conjugate Transpose and General Symmetry

Earlier, we defined the (Euclidean) norm of x ∈ R
n as ∥x∥2 = xTx.

The norm stands for the length or the size of the vector, and we

would like it to be real (and positive). In other words, we would like

∥x∥ ∈ R even if x ∈ C
n.

When xi is complex (in the form a + ib with b ̸= 0), x2
i is not

real, and xTx is not real. What is always real and positive is (a +
ib)(a − ib) = a2 + b2. a − ib is the complex conjugate of a + ib,
which we write as (a+ ib)∗ = a− ib. So we would like to have x∗

ixi

in ∥x∥2 rather than x2
i , which means the right definition of the norm

of x ∈ C
n is ∥x∥2 = x∗Tx.
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x∗T is the conjugate transpose, also known as Hermitian transpose,

ofx, which we will write1 asx = x∗T. Note that it is a generalization

of xT: For x ∈ R, x = xT. We may come across yet another

notation in some texts for the Hermitian transpose as xH.

Similarly, we can define the complex conjugate transpose (AKA

Hermitian transpose) of a matrix A ∈ C
n×n as its generalized trans­

pose, A . When A = A, we have the generalized version of

symmetry, and we call such matrices Hermitian.

Note that the product rule of transposes applies to the Hermitian

transposes as well: (AB) = B A .
Earlier, while discussing orthogonality, we stated that the inverse of

an orthonormal matrix (in R
n×n) is its transpose. For A ∈ C

n×n, the

condition would be A = A−1, and we call such matrices unitary.

When we look up information we may come across “unitary” used as a

synonym for “orthonormal,” which is technically correct because the

set of orthonormal matrices is a subset of the set of unitary matrices,

just as R ¢ C.

12.3 Eigen Properties of Hermitian Matrices

With this definition of generalized symmetry of matrices, we are ready

to restate some of the properties of eigenvalues and eigenvectors we

listed for real, symmetric matrices, and extend them to Hermitian

matrices. Note, however, that the field of complex numbers, C, is

not critical for our use in computer science, except when we look

for information on the internet, for instance, we may come across

terminology and explanations stated in terms of Hermitian, unitary,

complex conjugates etc. Such usage is common in the research

literature as well.

1. The eigenvalues of Hermitian matrices are real:

A ∈ C
n×n, A = A, As = λs =⇒ λ ∈ R

Proof :

1Some people write x
∗ to mean both conjugation on top of transposition. For this reason,

a less confusing notation for conjugate by itself may be an overline a+ ib = a− ib, but it
may lead to another contextual confusion: Are we underlining the line above or overlining
the variable below? Good or bad, we are going to stick with ∗ for complex conjugate and †
for conjugate transpose.
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(1) By the definition of eigenvalues: As = λs

(2) Multiplying on the left with s : s As = λs s

(3) Product rule of Hermitian transposes: (A s) s = λs s

(4) Since A is Hermitian: (As) s = λs s

(5) Using (1): (λs) s = λs s

(6) Since λ is a scalar: λ∗s s = λs s

(7) Since s s is never zero: λ∗ = λ

Step (7) says λ is real. Since all eigenvalues are real, the Λ
matrix (with eigenvalues in the diagonal) is Hermitian as well.

In fact, the proof we gave in §3 (page 198) holds for Hermitian

matrices as well, with minor changes. We , however, provided

a brand­new proof, now that we are in the happy position of

being able to do the same thing in multiple ways.

2. The eigenvectors of Hermitian matrices are orthogonal:

A ∈ C
n×n, A = A, Asi = λisi i ̸= j =⇒ si § sj

Note that the eigenvectors of complex matrix are, in general,

complex: si, sj ∈ C
n. The proof is pretty much identical to

the one given in the case of real, symmetric matrices (§2, page

200), but with minor changes to call transposes Hermitians.

Here is another, higher level, matrix­algebra way of looking at

it:

(1) Eigenvector matrix: A = SΛS−1

(2) Taking the Hermitian transpose: A = S−1 Λ S 

(3) Since A and Λ are Hermitian: A = S−1 ΛS 

(4) Equating the RHS of (1) and (3): SΛS−1 = S−1 ΛS 

One way this can be true is if S = S−1 for S ∈ C
n×n, which

is the same as sayingST = S−1 forS ∈ R
n×n. If the transpose

of a matrix is its inverse, then the matrix is orthonormal. We

have not actually proven it because we are not sure at this point
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whether the only way step (4) can be true is if S = S−1. Of

course it is, but we cannot yet see why.

12.4 Markov Matrices

A square matrix is called a Markov matrix if all its entries are non­

negative and the sum of each column vector is equal to one. It is

also known as a left stochastic matrix2. “Stochastic” by the way is a

fancy word meaning probabilistic. Markov matrices are also known

as probability/transition/stochastic matrices.

Markov Matrix

Definition: A =
[

aij
]

∈ R
n×n is a Markov matrix if

0 f aij f 1 and

n
∑

i=1

aij = 1

Markov matrices usually describe the transition probabilities between

states in a stochastic mathematical model.

12.4.1 Properties of Markov Matrices

All the following properties of Markov matrices follow from the fact

that the columns add up to one. In other words, if we were to add up

all the rows of a Markov matrix, we would get a row of ones because

each column adds up to one.

1. Markov matrices have one eigenvalue equal to one.

2. The product of two Markov Matrices is another Markov matrix.

3. All eigenvalues of a Markov matrix are less than or equal to

one, in absolute value: |λi| f 1.

Let’s try proving these properties one by one. Since its columns add

up to one, a Markov matrix always has one eigenvalue equal to one.

2The right stochastic matrix, on the other hand, would be one in which the rows add up to
one. Since our vectors are all column vectors, it is the left stochastic matrix that we will
focus on. But we should keep in mind that the rows of a matrix are, at times, considered
“row vectors.” For such a row vector, a matrix would multiply it on the right and we can
think of the so­called right­eigenvectors.
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Proof :

(1) Since A is a Markov matrix:

n
∑

i=1

aij = 1

(2) Therefore: ajj = 1−
n
∑

i=1,i ̸=j

aij

(3) The diagonal element in A− I: (A− I)jj = 1−
n
∑

i=1,i ̸=j

aij

(4) Sum of columns in A− I: (A− I)jj = 0

(5) Therefore: |A− I| = 0

(5) above says that |A− λI| = 0 with λ = 1, which means one is an

eigenvalue of any Markov matrix. All other eigenvalues are less than

one in absolute value,

Let’s prove it again using a slightly more sophisticated technique.

Let’s construct a column vector of all ones, and call it u ∈ R
n.

Taking the sum of the rows of the Markov matrix A is the same

as multiplying on the left with uT (which is a single­row matrix of

all ones), and we know that the product uTA = uT because the

columns of A add up to one. Taking the transpose, ATu = u, which

says that AT has an eigenvalue of one (with u as the eigenvector,

which is not important for us). Now, the eigenvalues of a matrix

and its transpose are the same (but the eigenvectors may be different)

because the characteristic polynomial, being a determinant, does not

change when we take the transpose. So we can see that A has at least

one eigenvalue equal to one.

The second property is that the product of two Markov matrices is

another Markov matrix. IfA andB are Markov, theAB cannot have

any negative entries because matrix multiplication, being addition

and multiplication of elements, cannot introduce a negative sign.

We also know that the each one of the columns of A and B adds

up to one, which means uTA = uT and uTB = uT. Consider

uTAB = uTB = uT. Therefore the columns of AB also add up

to one, or the product of two Markov matrices is another Markov

matrix.

The third property is that all the absolute values of the eigenvalues

of a Markov matrix are less than one: |λi| f 1, which follows from the

product property. An is a Markov matrix. If one of the eigenvalues
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was more than one, then Ak, k → ∞ could not be a Markov matrix

because its elements would have to be growing exponentially.

12.4.2 Steady State

In order to make this cryptic proof of the third property a bit more

accessible, let’s work out an example. Let’s say we are studying

the human migration patterns across the globe, and know the yearly

migration probabilities as in Table 12.1 through some unspecified

demographic studies. We know nothing else, except perhaps that the

birth and death rate are close enough to each other for us to assume

that they add up to zero everywhere. One reasonable question to

ask would be about the steady state: If we wait long enough, do the

populations stabilize?

Note that the numbers in each column add up to 100% because

people either stay or leave. The numbers in each row, on the other

hand, do not. Asia­Pacific and Africa lose people to the Americas

and Europe.

Once we have probabilities like Table 12.1, the first thing to do

would be to put the values in matrices, now that we know enough

Linear Algebra.

A =









0.80 0.04 0.05 0.05
0.10 0.90 0.07 0.08
0.03 0.01 0.75 0.02
0.07 0.05 0.13 0.85









x0 =









4.68
1.20
1.34
0.75









xk+1 = Axk

where we put the initial populations in a vector x0. As we can see,

A is a Markov matrix. It describes how the population evolves over

time. The populations for year k evolve to that of year k+1 as Axk,

which is identical to what we did in the case of Fibonacci numbers

in §11.7 (page 208). As we learned there, the long­term evolution

of the populations is fully described by the eigenvalues λi of A. If

|λi| > 1, we will have a growing system, if |λi| < 1, we will have

system tending to zero. If we have an eigenvalue |λi| = 1, we will

have as steady state. And we know that A does have a eigenvalue

equal to one.

Knowing thatx = xk will stabilize and reach an equilibrium value,

we can implement an iterative method to compute it: First, initialize

it x ← x0 Then iterate until convergence: x ← Ax. Doing all this
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Table 12.1 Migration probabilities

Destination ↓ Source → Asia­Pacific Americas Africa Europe

Asia­Pacific 80% 4% 5% 5%
Americas 10% 90% 7% 8%

Africa 3% 1% 75% 2%
Europe 7% 5% 13% 85%

Population (billions) 4.68 1.20 1.34 0.75

in numeric a program, we get:

xT =
[

0.7262 1.844 0.2549 1.175
]

The eigen way of doing it would be to find the eigenbasis, find

their linear combination to form x0:

x0 =
n

∑

i=1

cisi

and then say that (with λ1 = 1 and all other |λi| < 1):

xk = Ak

n
∑

i=1

cisi =
n

∑

i=1

ciA
ksi =

n
∑

i=1

ciλ
k
i si = c1λ

k
1s1 = c1s1

Therefore, we need to know only c1. But it still looks like a pain

to compute because, in order to find c1, we have to find all other ci,
which means we have to find all the eigenvectors.

Luckily for us, there is a shortcut. As x evolves from x0 to xk, the

sum of its components is the total population, which we are assuming

to be a constant. Therefore, in xk = c1s1, the components of xk and

c1s1 should add up to the same number, which is the total population.

In other words,

c1 =

∑

x0i
∑

s1i

where the summation is over the components of x0 and s1. So we

only need to know one eigenvector, s1 corresponding to the dominant

eigenvalue, λ = 1 in order to compute the limiting value of x = xk

as k → ∞. As expected, this computation will also yield the same

answer:

xT =
[

0.7262 1.844 0.2549 1.175
]
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12.4.3 Portal to a Big Field

Markov matrices are the starting point of the associated topics in

mathematical modeling, some of which are heavily used in machine

learning and data mining. For instance, Hidden Markov Models are

used in text mining for the so­called part­of­speech tagging. In our

short introduction here, we focused only on the basics, ignoring many

subtleties. A quick flip through the pages of this book will reveal that

permutation matrices are, in fact, Markov matrices. What are their

steady states? They have none; they have oscillating solutions. Other,

more complicated matrices may have multiple steady states among

which the solutions oscillate.

The Google Page Rank algorithm is a multi­billion dollar success

story of Markov matrices, which, as we see in the box, does not take

much more than our discussion here to fully understand.

12.5 Positive Definite Matrices

We saw that real, symmetric matrices were “good” matrices to work

with because they have real eigenvalues and orthogonal eigenvectors.

Positive definite matrices are even better.

Positive Definite Matrix

Definition: A real, symmetric matrix A ∈ R
n×n is positive definite

if all it eigenvalues are positive (λi > 0).

If an eigenvalue is equal to zero (which means A is singular), then

we call the matrix positive semidefinite. In other words, if we only

have λi g 0, then all we can say is that A is positive semidefinite.

Similarly, we can define negative definite and negative semidefinite

matrices, although they have dubious mathematical relevance.

We can extend the definition to A ∈ C
n×n using our definition of

Hermitian transpose, and most of what we learn here will apply to

them as well. However, for our purpose in computer science, we can

safely restrict ourselves to the real domain.

12.5.1 Test for Positive Definiteness

1. λi > 0? This test follows directly from our definition of

positive definite matrices.
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2. All the pivots > 0? The second test is essentially the same as

the first, by Sylvester’s law connecting the signs of pivots and

eigenvalues.

3. xTAx > 0? For a positive definite A and for any nonzero

vector x, xTAx > 0. Test (3) is a powerful one. In fact,

some textbooks define positive definiteness using this state­

ment. Let’s prove that it is equivalent to Test (1), which is our

definition of positive definiteness.

Proof : xTAx > 0 =⇒ λi > 0

(1) Consider an eigenvector of A: As = λs

(2) Left­multiplying with sT: sTAs = λsTs

(3) Rearranging: λ =
sTAs

sTs

(4) Since xTAx > 0 for any x and sTs > 0: λ > 0

Proof : λi > 0 =⇒ xTAx > 0

(1) For a real symmetric A: A = QΛQT

(2) Multiply with xT and x: xTAx = xTQΛQTx

(3) Calling y = Qx: xTAx = yTΛy

(4) Since Λ is diagonal [λi]: xTAx =
∑

λiy
2
i

(5) Since λi > 0: xTAx > 0

4. Do all the leading submatrices have |Ak| > 0? For A ∈ R
n×n,

the leading submatrix (AKA upperleft submatrix) of dimension

k < n, Ak ∈ R
k×k, is a block matrix of the first k rows and

columns of A. For positive definite A, the determinants of all

such Ak are greater than zero.

A =













a11 a21

a21 a22
... · · · . . .

ak1 ak2 · · · akk · · ·
... · · · . . .













Ak

(12.2)
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Eqn (12.2) illustrates the definition of a leading submatrix Ak.

Proof : Since A is positive definite, we know that xTAx > 0
for any x.

Let’s consider an x[k,0] which has nonzero entries in the first k
elements, the rest being zero. xTAx = xT

[k,0]Akx[k,0], has to

be greater than zero.

Then, by Test (3), Ak is positive definite, all its eigenvalues are

positive, and its determinant, being the product of its eigenval­

ues, has to be positive.

5. Can we write B = ATA? For a positive definite matrix B, we

can always find an invertible matrix A such that B = ATA.

Although not usually used as a test, this property is an important

one, and our last topic in the last chapter depends on it. Let’s

therefore prove it here.

Proof : B = ATA =⇒ B is positive definite.

xTBx = xTATAx = (Ax)TAx = ∥Ax∥2 > 0

Since A is invertible, Ax ̸= 0 unless x = 0.

Proof : B is positive definite =⇒ B = ATA for some

invertible A.

(1) Since B is positive definite: B = QΛQT

(2) Defining Λ
1

2 =
[√

λ
]

: B = QΛ
1

2Λ
1

2QT

(Matrix with
√
λi in the diagonal) = QΛ

1

2

(

QΛ
1

2

)T

(3) Defining AT = QΛ
1

2 : B = ATA

SinceB is positive definite, its eigenvalues are positive, andΛ
1
2

is invertible. So is Q because Q−1 = QT. So A is invertible.

12.5.2 Applying the Tests

Let’s see how we can apply these five tests to various matrices to

determine whether they are positive definite.

• If A is positive definite, is A−1 positive definite as well?
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We can apply Test (1): A has positive λi. The eigenvalues of

A−1 are 1
λi

which are positive too. Therefore, A−1 is positive

definite.

• If A and B are positive definite, how about A+B?

We apply Test (3) here: xT(A+B)x = xTAx+xTBx > 0
because A and B are both positive definite. So is the sum.

• For any A ∈ R
m×n with rank(A) = n (full column rank), is

ATA positive definite?

Test (3) proves useful again: xTATAx = (Ax)TAx =
∥Ax∥2 g 0. It is equal to zero only if Ax = 0 has nonzero so­

lutions, which means A has null space and A is rank­deficient.

Since we started with the assumption that A is full rank,

xTATAx > 0 and ATA is positive definite.

• For a positive definite A, is M−1AM positive definite for any

invertible M?

The answer is yes, and the reason is that A and M−1AM are

similar matrices, and they have the same eigenvalues. We shall

soon define matrix similarity and prove that similar matrices

have the same eigenvalues.

12.5.3 Quadratic Forms

One of the tests for positive definiteness, namely xTAx > 0, which

we called Test (3), leads to the big topic of quadratic forms. Although

not directly relevant to computer science, we will introduce the topic

of quadratic forms here, and list some of its general properties, so

that we may recognize it if we happen to come across it in some

mathematically oriented literature later on.

For a real, symmetric matrix, we can expand xTAx in R
2as below:

A ∈ R
2×2,AT = A =⇒ A =

[

a b
b c

]

and x =

[

x1

x2

]

xTAx =
[

x1 x2

]

[

a b
b c

] [

x1

x2

]

= ax2
1 + 2bx1x2 + cx2

2

(12.3)

As we can see, the product xTAx is a pure quadratic form, with

no linear or constant terms in it. Furthermore, as in Test (4), if the
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determinants of the leading submatrices of A are positive, we have:

a > 0 and ac− b2 > 0

Let’s take an example and see how a > 0 and |A| > 0 implies that

xTAx > 0 for all x.

A =

[

2 6
6 c

]

and |A| = 2c− 36 > 0 if c > 18.

Let’s set c = 20 =⇒

xTAx = 2x2
1 + 12x1x2 + 20x2

2 = 2(x2
1 + 6x1x2 + 9x2

2) + 2x2
2

xTAx = 2(x1 + 3x2)
2 + 2x2

2 > 0

As we can see, if c < 18, the last term in xTAx above becomes

negative, and the whole expression would be negative for some value

of x1 and x2 (both equal to zero, for instance). But if c > 18, the

expression, being the sum of two squares, can never be negative. And

hence, A is positive definite. If c = 18, A is positive semidefinite.

Note that inxTAx = 2(x1+3x2)
2+2x2

2, the 2 multiplying the first

term is a in A, which is the first pivot. The multiplier of the second

term, 2, is the second pivot. Inside the parentheses of the first term,

the factor multiplying x2, namely 3, is the multiplier of the first row in

Gaussian elimination to subtract from the second row. The quadratic

form, as we can see, is intrinsically connected to pivots and Gaussian

elimination. Our discussion with this little R2×2 generalizes to R
n×n,

which has interesting mathematical, if not numeric or algorithmic,

applications.

This connection between row operations in Gaussian elimination

and completing the squares in the quadratic form becomes even

clearer if we work with the general matrix A in Eqn (12.3).

A =

[

a b
b c

]

r2←− b

a
r1+r2−−−−−−−−→

[

a b

0 c− b2

a

]

a

(

x1 +
b

a
x2

)2

= ax2
1 + 2bx1x2 +

b2

a
x2
2 = xTAx− cx2

2 +
b2

a
x2
2

=⇒ xTAx = a

(

x1 +
b

a
x2

)2

+

(

c− b2

a

)

x2
2
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We can see the pivots and row multipliers in the expression for

(square­completed) xTAx in the last line above, can’t we? Fur­

thermore, xTAx > 0 if:

cx2
2 >

b2

a
x2
2 or when c >

b2

a
=⇒ ac− b2 = |A| > 0

12.5.4 Positive Definiteness and Symmetry

In our definition of positive definite matrix, we restricted ourselves

to symmetric ones. Our basic definition indeed made it abundantly

clear, by stating, “A real, symmetric matrix. . . ”. We should note that

some people relax this restriction, and consider matrices that are not

symmetric also positive definite if they pass the tests listed. While

we will stick with our definition because it makes sense for our use

in computer science, purely mathematical work may consider more

general definitions, and indeed more general fields like C, of even

unspecified ones.

12.6 Gram Matrix

For A ∈ R
m×n, rank(A) = r, its Gram matrix is defined3 as ATA

and has important applications in machine learning. It also has some

interesting properties that we exploit at various points in this book.

Before getting into the properties of Gram matrices, let’s revisit

some basic properties of ranks. The first one is that the row­rank

and the column­rank of a matrix are the same. Earlier, we defined

the rank as the number of pivots and also as the number of linearly

independent vectors in its row (or column) space. The number of

independent vectors is indeed the dimension of the subspace. To

prove the equality of row and column ranks, we will use the latter

definition.

We know that elementary row operations do not change the row

space of a matrix because they involve linear combinations of the

rows. Therefore, A has the same row rank as its RREF because they

both have the same row space. As we saw earlier, the shape of RREF

3The author is not quite sure if AA
T also considered a Gram matrix, although it should be,

by symmetry.
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is, in its most general case, as follows:

A
RREF
−−−→

[

Ir ⊕ Fr×(n−r)

0(m−r)×n

]

= R1

where · indicates that the I and F matrices have their columns

mixed in, not cleanly separated. Clearly, the dimension of the row

space of A is r, which is the row rank of both A and R1.

We can go further and get rid of the columns ofF using elementary

column operations, which do not change the column space. Starting

from R1, the RREF of A, we can perform a series of elementary

column operations, without affecting its column space, to reduce the

matrix to the following form:

RREF =

[

Ir · Fr×(n−r)

0(m−r)×n

]

Col. Ops−−−−−→
[

Ir 0r×(n−r)

0(m−r)×n

]

= R2

This form, obviously, has the same row and column rank of r, and

since our elementary operations changed neither, we can say that the

row rank of R1 is the same as the column rank of R2, which is r.

This claim propagates to the original A, and it has the same row and

column ranks. Therefore, row rank of any matrix is the same as its

column rank. It should be immediately obvious from this statement

that rank(A) = rank
(

AT
)

.

Getting back to ATA, we can see that every vector x ∈ N (A) is

also in the null space of ATA:

Ax = 0 =⇒ ATAx = 0 =⇒ x ∈ N (ATA) =⇒ N (A) ¦ N (ATA)

There may be more vectors in N (ATA), which is why we only

claim N (A) ¦ N (ATA). Now, coming at it from the other end, if

x ∈ N (ATA):

ATAx = 0 =⇒ xTATAx = 0, (Ax)T(Ax) = 0 =⇒ Ax = 0

Every vector in N (ATA) is also in N (A). Both these conditions

can happen only if N (A) = N (ATA), which means A and ATA

have the same nullity.

Since A ∈ R
m×n, its domain is Rn. And since ATA ∈ R

n×n, its

domain also is Rn. Therefore, by the rank­nullity theorem, we have
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rank(A) = rank
(

ATA
)

because

rank(A) = dim(Rn)− nullity(A)

rank
(

ATA
)

= dim(Rn)− nullity(ATA)

And nullity(A) = nullity(ATA) =⇒ rank(A) = rank
(

ATA
)

It is also easy enough to prove that A and ATA have the same row

space, looking at the product ATA as the linear combinations of the

rows of A and as the linear combinations of the columns of AT. At

this stage in our Linear Algebra journey, we are in the happy position

of being able to prove a lemma in multiple ways, and we can afford

to pick and choose.

Summarizing, A and ATA have the same row and null spaces.

AT and AAT have the same column space and left­null space. All

four of them have the same rank.

For a full­column­rank matrix (A ∈ R
m×n, rank(A) = n), the

Gram matrixATA is a full­rank, square matrix with the same rank. It

is also much smaller. We can, therefore test the linear independence

of the n column vectors in A by looking at the invertibility (or,

equivalently, the determinant) of the Gram matrix. In data science,

as we shall see in the last chapter of this book, the Gram matrix is the

covariance matrix of a zero­centered data set.

12.7 Matrix Similarity

We consider a matrixA similar to another oneB if we can writeA =
M−1BM for some invertible matrix M . We denote similarity as

A ∼ B. As we can immediately see, A is similar to Λ, its eigenvalue

matrix, when we have a full set of eigenvectors (and therefore the

eigenvector matrix S is invertible) because then A = SΛS−1. Note

that we are talking about any square matrix A now, not necessarily

symmetric matrices.

While this definition of matrix similarity may look strange at first,

there are good reasons behind it: Similar matrices share several key

properties. Here is a list, with proof wherever necessary:

1. For invertible matrices A and B, AB ∼ BA.

Proof :
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AB ∼ MABM−1
∼ BABB−1

∼ BA with M = B

2. If A ∼ B, they have the same characteristic polynomials.

Proof : Let’s use pA(λ) to denote the Characteristic Polynomial

of A. Since A ∼ B, A = M−1BM .

(1) Characteristic Polynomial pA(λ) = |A− λI|
(2) Since A = M−1BM : pA(λ) =

∣

∣M−1BM − λI
∣

∣

(3) Since M−1M = I: pA(λ) =
∣

∣M−1BM −M−1λIM
∣

∣

(4) Factorizing M and M−1: pA(λ) =
∣

∣M−1(B − λI)M
∣

∣

(5) Since |AB| = |A| |B|: pA(λ) =
∣

∣M−1
∣

∣ |B − λI| |M |
(6) Since |A|

∣

∣A−1
∣

∣ = |I| = 1: pA(λ) = |B − λI| = pB(λ)

Step (6) above shows that bothA and the similar matrixB have

the same characteristic polynomial. Note that, as a consequence

of the characteristic polynomials being the same, the algebraic

multiplicities of the eigenvalues (how many times each one is

repeated) are also the same for A and B.

3. If A ∼ B, they have the same eigenvalues, but not necessarily

the same eigenvectors.

Proof : We already showed thatA andB have the same charac­

teristic polynomial. Therefore they have the same eigenvalues

(which are the roots of the said polynomial). But here is another

proof.

(1) Definition of similarity: A = M−1BM

(2) Left­multiplying by M : MA = BM

(3) Right­multiplying by s: MAs = BMs

(4) Since s is eigenvector of A: Mλs = BMs

(5) Commuting λ: λ(Ms) = B(Ms)

(6) LHS´ RHS: B(Ms) = λ(Ms)

Step (6) says that Ms is an eigenvector of B with the same

eigenvalue λ, by the definition of eigenvalues and eigenvectors.

4. Combining the previous property with the first one, we can see

that AB and BA have the same eigenvalues.
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5. If A ∼ B and A is positive definite, so is B

Proof : Determinant is the product of eigenvalues.

6. A ∼ B =⇒ |A| = |B|
Proof : Determinant is the product of eigenvalues.

7. A ∼ B =⇒ trace(A) = trace(B)
Proof : Trace is the sum of eigenvalues.

8. Similar matrices have the same rank.

Proof : The number of (positive and negative) pivots is the same

the number of (positive and negative) eigenvalues, through

Sylvester’s Law of Inertia. And the rank is the number of

pivots.

12.7.1 Equivalence Relation

The properties listed above are the ones that are useful for us in Linear

Algebra. However, more basic than them, similarity as a relation has

some fundamental properties that make it an equivalence relation.

Here is a formal statement of what it means.

For A,B,C ∈ R
n×n, we can easily show that similarity as a

relation is:

Reflexive: A ∼ A

Proof : A = IAI−1

Symmetric: A ∼ B =⇒ B ∼ A

Proof : A = MBM−1 =⇒ B = M−1AM = M ′AM ′−1

Transitive: A ∼ B and B ∼ C then A ∼ C

Proof : A = MBM−1,B = NCN−1

=⇒ A = MNCN−1M−1 = (MN)C (MN)
−1

=⇒ A = M ′CM ′−1

When a relation has these three fundamental properties, it is called an

equivalence relation. And matrix similarity is an equivalence relation.

12.7.2 Diagonalizability

Since A is similar to its eigenvalue matrix Λ, if A is diagonalizable,

so are the matrices similar to it. In fact, this statement would be a

good, albeit incomplete, definition of similarity.
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Similarity

Definition: A matrix is similar to another matrix if they diagonalize

to the same diagonal matrix.

As we can see, the similarity relation puts diagonalizable matrices

in families. In R
n×n, we have an infinity of such mutually exclusive

families. All matrices with the same set of eigenvalues belong to the

same family.

When we said “the same diagonal matrix” in the definition of

similarity above, we were being slightly imprecise: We should have

specified that shuffling the eigenvalues is okay. We are really looking

for the same set of eigenvalues, regardless of the order.

However, this definition leaves something unspecified: What hap­

pens if a matrix is not diagonalizable? Does it belong to no family?

Is it similar to none? Is it an orphan? It is in this context that the

Jordan Normal Forms come in to help. Since it is an important topic,

we will promote it to a section of its own.

12.8 Jordan Normal Forms

As we remember, in order for a matrix to be diagonalizable, its

eigenvector matrix S needs to be invertible, so that we can go from

AS = ΛS (which is always true) to A = SΛS−1. For S to be in­

vertible, we need its columns to be linearly independent, which means

we need a full set of eigenvectors. In other words, for A ∈ R
n×n, we

need n linearly independent eigenvectors for it to be diagonalizable.

We also saw (in §11.4.2, page 199) that the eigenvectors corre­

sponding to distinct eigenvalues are linearly independent. We can,

therefore, say that a matrix with no repeated (AKA degenerate) eigen­

values is diagonalizable. The converse is not true though: If a matrix

does have repeated eigenvalues, it does not mean that it cannot be

diagonalized. The identity matrix in R
n, for instance, has the eigen­

value one repeated n times, but is perfectly diagonalizable. In fact,

it is already in the diagonal form. As we shall see shortly, the right

statement about diagonalizability is that if the algebraic multiplicity

of an eigenvalue is greater than its geometric multiplicity, the matrix

cannot be diagonalized.

We looked at such an example earlier, namely the shear matrix,

which was not diagonalizable. A general form of such a shear matrix
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A ∈ R
2×2 is shown below. It has a twice­repeated eigenvalue of

λ because the product of the eigenvalues is |A| = λ2 and their

sum is trace(A) = 2λ, which can be easily verified by solving its

characteristic polynomial4. But it has only one eigenvector s.

A =

[

λ a
0 λ

]

=⇒ λ1 = λ2 = λ, s =

[

1
0

]

(12.4)

In fancier language, the eigenvalue λ has an algebraic multiplicity

of two, and a geometric multiplicity of one. It is when the geo­

metric multiplicity is smaller than the algebraic multiplicity that we

have a matrix that cannot be diagonalized. Note that the geometric

multiplicity can never be greater than the algebraic multiplicity.

The closest we can get to a diagonal matrix for this matrix A

in Eqn (12.4) is when we have the repeated eigenvalues along the

diagonal, and a one in the position of a. This matrix is called the

Jordan normal (or canonical) form of A. It is defined as a block

matrix in terms of what are known as Jordan blocks.

Joran Normal Form

Definition: A square matrix (J ) made up of Jordan blocks is called a

Jordan normal form (JNF) of a matrix A if A ∼ J .

Jordan Block

Definition:A Jordan block of size k and value λ, Jk(λ) is a square

matrix with the value λ repeated along its main diagonal and ones

along the superdiagonal with zeros everywhere else. Here are some

examples of Jordan blocks:

J1(λ) =
[

λ
]

J2(λ1) =

[

λ1 1
0 λ1

]

J3(7) =





7 1 0
0 7 1
0 0 7



 (12.5)

As we can see, superdiagonal means the diagonal above the main

diagonal, so to speak. In the matrix J , each eigenvector has a Jordan

block of its own, and one block has only one eigenvalue. If we have

repeated eigenvalues, but linearly independent eigenvectors, we get

multiple Jordan blocks. For instance, for the identity matrix in R
n×n,

4The characteristic equation is |A− λ′I| = (λ− λ′)2 = 0, with λ′ as the dummy variable
in the polynomial because we already used λ as the diagonal elements of the shear matrix.
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Table 12.2 Jordan Normal Forms J of A ∈ R
2×2 with Asi = λisi

Comments Multiplicities Jordan Examples of
on A Algeb. Geom. Normal Form Similar Matrices

1
Most matrices
rank(A) = 2

1, 1 1, 1
[

λ1 0
0 λ2

] Any A with trace and
|A| equal to sum and
product of λi

2
λ2 = 0, s2 ∈ N (A)
rank(A) = 1

1, 1 1, 1
[

λ1 0
0 0

]

[

λ1 − t1 t2
λ1t1−t

2

1

t2
t1

]

3
Repeated λ and s

rank(A) = 2
2 2

[

λ 0
0 λ

]

Only J = A

4
λ1 = λ2 = 0
s1, s2 ∈ N (A)
rank(A) = 0

2 2
[

0 0
0 0

]

Only J = A

5
Repeated λ, one s

rank(A) = 2
2 1

[

λ 1
0 λ

]

[

2λ− t1 t2
−λ

2
−2λt1−t

2

1

t2
t1

]

In the last column, t1, t2 ∈ R are any numbers that will generate an example of a similar
matrix for the corresponding row. They are constructed such that the sum and product of
the eigenvalues come out right. Note that the Jordan normal forms in all rows except the
fifth one have two Jordan blocks each.

we have n Jordan blocks, J1(1), each with λ = 1. In the examples

above in Eqn (12.5), the first one corresponds to a good eigenvalue

with an associated eigenvector. The second one has the eigenvalue

repeated twice, but with only one eigenvector, much like our shear

matrix. The third one is for an eigenvalue with algebraic multiplicity

of three and geometric multiplicity of two, to use the right terms.

With these definitions of Jordan normal forms and blocks, we can

state the Jordan’s Theorem.

Jordan’s Theorem

Every square matrix A ∈ R
n×n with k f n linearly independent

eigenvectors si, 1 f i f k and the associated eigenvalues λi, 1 f
i f k, which are not necessarily linearly independent, is similar to a

Jordan matrix J made up of Jordan blocks along its diagonal.

To start with something simple before generalizing and compli­

cating life, let’s look at A ∈ R
2×2 with eigenvalues λ1 and λ2 and

the corresponding eigenvectors s1 and s2. Table 12.2 tabulates the

various possibilities. Let’s go over each of the rows, and generalize

it to from R
2×2 to R

n×n.
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1. The first row is the good case, where we have distinct eigenval­

ues and linearly independent eigenvectors. The Jordan Normal

Form (JNF) is the same as Λ. Each λi is in a Jordan block

J1(λi) of its own.

2. When one of the two eigenvalues is zero, the matrix is singular,

and one of the eigenvectors is the basis of its null space. Qual­

itatively though, this case is not different from the first row. In

R
n×n, we will have JNF = Λ.

3. When the eigenvalues are repeated (meaning algebraic multi­

plicity is two), but we have two linearly independent eigenvec­

tors. Again, JNF = Λ. However, we have no other similar

matrices: MJM−1 = λMIM−1 = λI = J .

4. This row shows a rank­zero matrix. Although troublesome, it

is also qualitatively similar to the previous row.

5. In the last row, we have the geometric multiplicity smaller than

the algebraic one, and we have a J2(λ).

In order to show the Jordan form in all its gory detail, we have a

general Jordan matrix made up of a large number of Jordan blocks in

Eqn (12.6) below:

J =































λ1

0 λ1

0 0 λ1

0 0 0 λ2 1
0 0 0 0 λ2 1
0 0 0 0 0 λ2

0 0 0 0 0 0 λ3 1
0 0 0 0 0 0 0 λ4 1
0 0 0 0 0 0 0 0 λ4

0 0 0 0 0 0 0 0 0
. . .































J1(λ1)

J1(λ1)

J1(λ1)

J3(λ2)

J1(λ3)

J2(λ4)

(12.6)

Each Jordan block is highlighted in a colored box with its label Jk(λ).
Here is what this Jordan matrix J tells us about the original matrix

A (of which J is the Jordan Normal Form):

• The eigenvalues of J and A are the same: λi.

• The algebraic multiplicity of any eigenvalue is the size of the

Jordan blocks associated with it.

• Its geometric multiplicity is the number of Jordan blocks asso­

ciated with it.
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• A can be diagonalized if and only if each Jordan block in J is

of size one. In other words, J needs to be diagonal for A to be

diagonalizable.

Table 12.3 lists the multiplicities of the eigenvalues shown in

Eqn (12.6). Since J has some elements in the superdiagonal, A

is not diagonalizable. The closest A can get to a diagonal matrix is

indeed its Jordan normal form J .

Table 12.3 Multiplicities of eigenvalues from Joran blocks

Eigenvalue Multiplicities
λi Algebraic Geometric

λ1 3 3
λ2 3 1
λ3 1 1
λ4 2 1

Much like the other topics in this chapter, Jordan canonical form

also is a portal, this time to advanced theoretical explorations in Linear

Algebra, perhaps more relevant to mathematicians than computer

scientists.

12.9 Algorithms

We already learned three named algorithms, namely,

1. Gaussian Elimination, also known as PLU or just LU de­

composition.

2. Gauss­Jordan Elimination, for matrix inversion.

3. Gram­Schmidt Orthonormalization, which gave us QR de­

composition.

They are neatly summarized in Table 8.1 and recapped in the as­

sociated text. We came across one more algorithm earlier in this

chapter (see §12.4.2, page 228), where we computed one eigenvector

corresponding to λ = 1. The method is called the Power Iteration

Algorithm, and can, in fact, find the largest eigenvalue/eigenvector

pair.
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12.9.1 Power Iteration

We saw power iteration in our Markov matrix, migration patterns,

example. In general, the power iteration algorithm returns the dom­

inant eigenvalue (which is the one with the largest absolute value).

The process is simple: We start with a random initial vector, apply

the matrix to it, renormalize it and iterate.

Input: A ∈ R
n×n

Output: Dominant λ ∈ C

1: Start with a random s

2: repeat

3: Normalize it: s← s

∥s∥

4: s← As

5: until Convergence

6: return s is the eigenvector for the largest λ

Once we have s, we can calculate λ as:

λ =
sTAs

sTs
(Because As = λs)

which, by the way, is called the Rayleigh quotient.

Limitations The power iteration algorithm has a couple of limita­

tions5.

1. If we start with a bad guess for the initial vector, the power iter­

ation algorithm may not converge to the dominant eigenvalue.

2. For complex eigenvalues, we have to start with a complex initial

vector. Otherwise, the algorithm may oscillate between the two

conjugate eigenvalue pairs.

12.9.2 QR Algorithm

A general numerical method to compute all eigenvalues and eigen­

vectors of a matrix is the QR algorithm, based on the Gram­Schmidt

process.

Input: A ∈ R
n×n

Output: λi ∈ C

1: repeat

2: Perform the Gram­Schmidt process to get QR

5From Wiki University.

https://en.wikiversity.org/wiki/Numerical_Analysis/Power_iteration_examples
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3: We get: A = QR

4: Consider: RQ = Q−1QRQ = Q−1AQ

5: =⇒ RQ and A are similar and have the same eigenvalues

6: Therefore, set A← RQ

7: until Convergence

8: return The diagonal elements of R as the eigenvalues

Convergence is obtained when A becomes close enough to a trian­

gular matrix. At that point, the eigenvalues are its diagonal elements.

Once we have the eigenvalues, we can compute the eigenvectors as

the null space of A− λI using elimination algorithms.

12.9.3 Cholesky Decomposition

A matrix factorization technique that has several applications is the

Cholesky Decomposition, which says that any positive definite matrix

A can be written as the product of a lower triangular matrix and its

transpose. We are, once again, dealing with real matrices, but this

decomposition applies to complex matrices as well.

A = LLT

The algorithm to perform this factorization is written in terms of

block matrices. We first partition A and L into blocks as shown

in Eqn (12.7). We keep the element in the first row, first column

as one block, and partition the rest of each matrix into a column

vector (a21, l21 ∈ R
n−1), its transpose and a smaller matrix like

A22,L22 ∈ R
(n−1)×(n−1).

A =











a11 aT

21

a21 A22











L =











l11 0T

l21 L22











(12.7)

Note that we used the fact that A is symmetric in dividing up the top

row of A as [a11 aT

21]. Similarly, we could write the first row of L as

[l11 0T] because it is lower triangular. And, we do not have to worry

about the second factor LT at all because it is just the transpose of L.

A = LLT =⇒
[

a11 aT

21

a21 A22

]

=

[

l11 0T

l21 L22

][

l11 lT21

0 LT

22

]
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Expanding the matrix multiplication A = LLT using the block

matrices, and comparing the corresponding elements in A and LLT:

[

a11 aT

21

a21 A22

]

=

[

l211 l11l21

l11l21 l21l
T

21 +L22L
T

22

]

a11 = l211 =⇒ l11 =
√
a11

a21 = l11l21 =⇒ l21 =
a21

l11
=

a21√
a11

A22 = l21l
T

21 +L22L
T

22 =⇒ A22 − l21l
T

21 = L22L
T

22

(12.8)

The second and third last lines in Eqn (12.8) tell us the elements of

L. Note that we decide to go with the positive square root for l11.

The very last line tells us that once we got l11 and l21, the problem

reduces to computing the Cholesky decomposition of a smaller matrix

A′ = A22 − l21l
T

21.

Before we write it down as a formal algorithm, the only thing left

to do is to ensure that A′ is positive definite. Otherwise, we are

not allowed to assume that we can find A′ = L′L′T. In the fourth

test for positive definiteness (on 231), we proved that the upper­left

submatrices of a positive definite matrix were also positive definite. If

we look closely at the proof, we can see that we did not need to confine

ourselves to “upper­left”: Any submatrix sharing the main diagonal

is positive definite. Therefore, if A in our Cholesky factorization is

positive definite, so is A22. We also saw that sums of positive definite

matrices are positive definite. Extending it to nontrivial (meaning,

nonzero) differences, we can see that A′ = A22 − l21l
T

21 is positive

definite6.

Looking at Eqn (12.8), we can translate it to an algorithm7 as

below:

Input: A ∈ R
n×n

Output: L ∈ R
n×n

1: Initialize L with zeros

2: repeat

3: Divide A into block­matrices as in Eqn (12.7)

4: l11 ←
√
a11

6To be very precise, l21l
T

21 is a rank­one matrix, and is only positive semidefinite. But the
difference is still positive definite.
7This description and the algorithm listed are based on the discussion in this video.

https://youtu.be/x4grvf-MfTk
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5: l21 ← a21

l11

6: A← A22 − l21l
T

21

7: until A22 becomes a scalar

8: return The matrix L

Applications of Cholesky Decomposition

1. The LLT decomposition is faster in solving systems of linear

equations than Gauss­Jordan by about a factor of two. The

catch is that it applies only when the coefficient matrix A is

positive semidefinite.

2. In simulation programs, we usually face the problem of having

to work with multivariate normal distribution, where we need to

simulate correlated, normally distributed variables, which are

specified by their covariance matrix (Σ ∈ R
n×n) with means

(µ ∈ R
n). The standard way of accomplishing this task is to

draw the required number (n) random variables for a standard

normal distribution (with σ = 1, µ = 0) and multiply this

random vector (x ∈ R
n) by the lower triangular matrix L and

shift it byµ, whereL comes from the Cholesky Decomposition

of Σ = LLT. The required vector of random numbers would

then be Lx+µ, which would have the right covariance matrix

(Σ ∈ R
n×n) and means (µ ∈ R

n).
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13
Singular Value
Decomposition

What is best in mathematics deserves not merely to be

learnt as a task, but to be assimilated as a part of daily

thought, and brought again and again before the mind

with ever­renewed encouragement.

—Bertrand Russell

Singular Value Decomposition (SVD) has come into prominence

in the last couple of decades because of its direct applicability in

algorithms in computer science, especially when dealing with large

volumes of data. It finds applications in, for instance, data com­

pression, dimensionality reduction, principal component analysis etc.

From a mathematical perspective, SVD is a topic that embodies pure

elegance. And it brings a large part of what we discussed in this

book (eigen analysis, vector spaces and bases, orthogonality, the four

fundamental subspaces etc.) together in one cohesive unity. In many

more ways than one, therefore, Singular Value Decomposition is ap­

propriate as a closing chapter for an introductory book on Linear

Algebra.
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13.1 What SVD Does

In eigenvalue decomposition (EVD), we took a square matrix A, and

wrote it as:

AS = SΛ

where Λ is a matrix with eigenvalues in the diagonal, S is the matrix

where we have the eigenvectors as columns. For real, symmetric

matrices, we saw that S was orthogonal, whose transpose is the same

as its inverse, and we wrote:

A = QΛQT

Since an orthogonal matrix is a rotation, we can interpret this decom­

position geometrically. In Ax = QΛQTx, what A does to x (or,

how it transforms x) is the same as a rotation (QT), followed by a

scaling (Λ) and then another rotation (Q) by the same angle(s) in the

opposite direction.

This interpretation of eigenvalue decomposition (EVD), which we

called the Spectral Theorem, works only for real, symmetric matrices.

In fact, the computation of eigenvalue and eigenvectors can be done

only for a square matrices. Given that the data matrices that we deal

with are far from square ones, these restrictions of EVD severely

restrict its applicability to computer science. What SVD does is to

decompose any matrix into a rotation, followed by a scaling, followed

by another rotation, viewing A ∈ R
m×n as a transformation of x,

taking it from R
n to R

m.

To reiterate, when we apply SVD, A ∈ R
m×n is any matrix. It

does not have to be symmetric, not even square. Although it does not

need to be real either, we will again worry only about real matrices.

To assign symbols to these verbose statements:

A ∈ R
m×n SVD−−→ A = UΣV T

U ∈ R
m×m, Σ ∈ R

m×n, V ∈ R
n×n

(13.1)

Σ is a diagonal matrix (or as diagonal as a non­square matrix can

be), with positive values along the main diagonal, starting from σ1

all the way to σr, where r = min(m,n, rank(A)), with the rest of the

elements all zero. Note also that the action of a diagonal matrix [σi]
on a matrix X multiplying it on the right is to scale the ith row of X

by σi.
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Fig. 13.1 The shear matrix under SVD analysis.

Before learning how SVD does its magic, let’s take a look at an

example. For ease of visualization, we will work with a square matrix

so that we can draw the vectors and their transformations in R
2.

A =

[
√
3
2

0

−1
√
3
2

]

SVD−−→ A = UΣV T

U =

[

1
2

√
3
2

−
√
3
2

1
2

]

Σ =

[

3
2

0

0 1
2

]

V =

[
√
3
2

1
2

−1
2

√
3
2

]

A few points to note about these matrices:

• We do not yet know how we got the decomposition A =
UΣV T, but we can verify its validity by multiplying. In fact,

what we did in coming up with the “decomposition” above was

to start from the U,Σ and V matrices and take their product

to get A as A = UΣV T.

• U is indeed a rotation, as described in Figure 7.4, with the

angle of rotation θ = −π
3
, a clockwise rotation through 60°.

• Similarly, V is a rotation θ = −π
6
, or clockwise 30°. Therefore,

V T (being the same as V −1) is an anti­clockwise rotation of

30°.
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• Most importantly, as shown in Figure 13.1, the matrix A is a

vertical shear matrix: It shears the x­component down (propor­

tional to the y component), and leaves the y component alone,

but for some scaling. As we learned earlier (in §11.2.3, page

192 and further explanation on page 195), shear matrices do

not have a full set of eigenvectors and they cannot be diagonal­

ized. But, they do have a singular value decomposition, as do

all matrices.
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Fig. 13.2 The first rotation by V T, anti­clockwise rotation through 30°.

Figures 13.2 to 13.5 show the actions of these three matrices, and

a summary. The transformation a vector x by Ax is broken down

into UΣV Tx. The first multiplication by V T is a rotation, shown in

Figure 13.2. It does not change the size of any vector x, nor of the

basis vectors q1 and q2 shown in red and blue. In their new, rotated

positions, q1 and q2 are shown in lighter red and blue. The unit

vectors all have their tips on the unit circle, as shown in Figure 13.2.

Because of the rotation (of 30°) by V T, all the vectors in the first

quadrant are now between the bright red and blue vectors q′

1 and q′

2.

We then apply the scaling Σ on the product V Tx, which scales

along the original (not the rotated) unit vectors q1 and q2. In Fig­

ure 13.3, we can see how the rotated unit vectors (now shown in

translucent red and blue) get transformed into their new versions.

What Σ does to the unit vectors qi, it does to all vectors. Therefore,
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Fig. 13.3 The second scaling by Σ, x­components by 1.5 and y by 0.5.

the unit circle gets elongated along the x direction, and squashed

along the y direction. What we mean by this statement is that all

vectors whose tips are on the unit circle get transformed such that

their tips end up on the said ellipse. As a part of this transformation,

the rotated unit vectors, the translucent red and blue vectors q′

1 and

q′

2, get transformed to q′′

1 and q′′

2 (in brighter colors) on the ellipse. In

other words, the effect of the two transformations, the product ΣV T,

is to move all the vectors in the first quadrant of the unit circle to the

arc of the ellipse between the bright red and blue vectors q′′

1 and q′′

2 .

Notice that the transformed ellipse in Figure 13.3 has its axes along

the x and y directions. The last step, shown in Figure 13.4, is the

rotation by U . It is a anti­clockwise rotation of 60°. It rotates the

unit vectors through that angle. Remembering that the axes of the

ellipse after the scaling (in Figure 13.3) were along the directions of

x and y unit vectors, we can see that how the ellipse gets rotated. Of

course, the rotation happens to all the vectors. TheΣV T­transformed

versions of the original unit vectors (from Figure 13.2), now shown

in translucent red and blue in Figure 13.4 as q′′

1 and q′′

2 , for instance,

get rotated to the bright red vector, with its tip at (
√
3
2
,−1) and the

bright blue vector with its tip at (0,
√
3
2
). This indeed is exactly what

the shear matrix A does, as illustrated in Figure 13.1.
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Fig. 13.4 The third rotation by U , clockwise rotation through 60°.

Now we are in a position to summarize whatA does, either through

the direct path Ax or by the three steps U ΣV Tx, as shown in

Figure 13.5.
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Fig. 13.5 The geometry of SVD, summarized.

We may be tempted to think, from the figures, that one rotation and

one scaling might be enough to do everything thatA does. We should,

however, note that the first quadrant of the unit circle in Figure 13.2

is getting mapped to the arc of the ellipse between the light red and

blue vectors in Figure 13.3. One rotation and one scaling could give

is this mapping, but the ellipse would have its axes along the unit
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vectors. Or, by applying a scaling and then a rotation, we could get

to the right ellipse as in Figure 13.4, left panel, but the points in the

first quadrant on the unit circle would be mapped to the first quadrant

of the ellipse. We really do need two rotations and a scaling.

The story in the general case of A ∈ Rm×n, of course, is much

more complicated, but the fundamental idea is still the same. We use

the intuitions from R2 in order to make use of the power of SVD in

higher dimensions as well.

13.2 How SVD Works

From our discussions on the four fundamental subspaces defined by

a matrix A, we know that its row space C(AT) gets mapped to its

column space C(A). Furthermore, the mapping is one­to­one and

onto, which means a vector v ∈ C(AT) gets mapped to a unique

vector u ∈ C(A). Both C(AT) and C(A) have the same dimension,

which is the rank of A, r. In other words, we should be able to find

r orthogonal vectors in C(AT) to span the row space; we could, for

instance, apply the Gram­Schmidt algorithm to do it.

Let’s say that these r orthonormal basis vectors in C(AT) are vi.

When applying the transformation of A to them, we get some vectors

in C(A): Avi = ui. We know that these are r unique vectors ui

because A : C(AT) 7→ C(A) is a one­to­one mapping. However,

we have no reason to think that they are orthogonal or normalized.

We can insist that they be normalized by factoring out their norms:

Avi = σiui with ∥ui∥ = 1.

The vectors ui are unique because each of them is a different linear

combination of the columns of A with the coefficients as specified in

vi and the vectors vi are linearly independent. Taking this as one of

the last teachable moments in this textbook, let’s harp on this point

a bit more. Since vi ∈ C(AT), we know that Avi ̸= 0. And since

the vectors vi form a basis for C(AT), they are linearly independent,

which means, at the very least, the components of one of them cannot

all be the same as that of another. By the column picture of matrix

multiplication, ui = Avi is a linear combination of the columns of

A with different coefficients that are components of vi. And, from

way back in the first or second chapter, we know that two different
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linear combinations
∑

sivi and
∑

tivi cannot be the same: Linear

combinations are unique.

What we are demanding in Singular Value Decomposition (SVD)

of A ∈ Rm×n, rank(A) = r f min(m,n) is something remarkable:

Our goal is to find a special orthonormal basis in the row space of

A that gets mapped to an orthonormal basis in its column space:

We want a basis V for C(AT), and a U for C(A), with a special

requirement each vi ∈ C(AT) gets mapped to a ui ∈ C(A), with a

possible scaling factor σi. The remarkable fact behind SVD is that

we will always be able find such bases, and we shall shortly see why

and how. We will have a mathematical proof and recipe to find such

bases.

Since the rank of the matrix is r, we can find only r linearly

independent vectors in C(A) and C(AT). We will worry about the

rest of the column vectors in U and V later.

Let’s write down all we have so far:

Û =





| | · · · |
u1 u2 · · · ur

| | · · · |



 ∈ Rm×r = [ui]

V̂ =





| | · · · |
v1 v2 · · · vr

| | · · · |



 ∈ Rn×r = [vi]

We are putting a hat on the U and V matrices because they are

smaller, more economical ones for now. They are not the full­sized

versions in Eqn (13.1). Each vi ∈ C(AT) is going to be mapped to

a corresponding ui ∈ C(A), as per our requirement. We then have

the following, where we have arranged σi, 1 f i f r as the diagonal

elements in Σ̂ ∈ Rr×r. Remember that we require the columns of V̂

and Û to be orthonormal.

Avi = σiui =⇒ AV̂ = ÛΣ̂

Remembering that for a matrix with orthonormal columns, we know

that the product of its transpose with itself is the identity matrix. For

instance, the product ÛTÛ for Û ∈ Rm×r is Ir ∈ Rr×r because

the elements in the product are the dot products of the columns of

Û , which are either zero or one. We should not, however, call Û
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orthonormal because it is not a square matrix. Same same argument

applies to V̂ TV̂ as well.

We can now do a bit of matrix algebra magic to compute Û and V̂

(1) Orthonormal requirement: AV̂ = ÛΣ̂

(2) Taking the transpose of (1): V̂ TAT
= Σ̂

TÛT

(3) Multiplying (2) and (1): V̂ TATAV̂ = Σ̂
TÛTÛΣ̂

(4) Since ÛTÛ = I: V̂ TATAV̂ = Σ̂
T
Σ̂

(5) Since Σ̂ is diagonal: V̂ TATAV̂ = Σ̂
2

(6) Left and right multiply by V̂ and V̂ T
: V̂ V̂ TATAV̂ V̂ T

= V̂ Σ̂
2V̂ T

(7) If V̂ V̂ T
= I: ATA = V̂ Σ̂

2V̂ T

In statement (7), we specify a conditional: If V̂ V̂ T = I , then

we get an equation involving V̂ and Σ̂2, where we can identify an

eigenvalue equation, much like the Spectral theorem, A = QΛQT.

It then follows that the singular value decomposition is the eigenvalue

decomposition of the product ATA and the singular values are the

positive square roots of its eigenvalues.

The condition V̂ V̂ T = I is a problem though. We proved that

V̂ TV̂ = I . Can we also show that V̂ V̂ T = I? It turns out that

we cannot, for one very good reason: It is not true. One way to get

around this difficulty is to consider only full­column­rank matrices

A, in which case we have rank(A) = r = n and a square matrix

V ∈ Rn×n. We will drop the hat on V because it is now the basis

for the whole of the domain of A, namely Rn. What we now have

are the matrices as shown in Figure 13.6. Following the same logic,

we can show that

AAT = ÛΣ̂2ÛT

with the proviso that A be a full­row­rank matrix in this case.

As for Σ̂2 = [σ2
i ], it is the square of a diagonal matrix. It is,

therefore, simply another matrix with the squared elements along the

diagonal.

Comparing these results with our eigenvalue equations in the Spec­

tral Theorem (§12.1.1, page 222), we can see that these are the eigen­

value equations for ATA and AAT. Therefore, we conclude that the

left­singular vectors ui are the eigenvectors of AAT and the right­
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Fig. 13.6 The shapes of U ,Σ and V in SVD when A is a full­column­rank matrix.

singular vectors vi those of ATA. And the singular values are the

square root of the eigenvalues of either ATA or AAT. As we saw in

one of the exercises in the previous chapter, the nonzero eigenvalues

of ATA are the same as those of AAT.

Although we derived the formulas for the singular vectors using the

provisos of the matrix A being full­column or full­row rank, they are

indeed valid for all matrices. The right approach would have been to

complete the orthonormal basis on the domain side (from V̂ , which

is the basis for the row space) to all of Rn (by adding the basis for the

null space as well). Similarly, we should have completed the basis

on the output space (Rm) by including the basis vectors of the left

null space so that we can drop the hats on both V and U and get the

picture shown in Figure 13.7. It is perhaps wise to repeat these wordy

statements with more mathematical precision as in the following list,

where we will use the symbol B to denote basis.

• V̂ is a basis for the row space of A: V̂ = B
{

C(AT)
}

• V is a basis for the domain, which is the union of the bases for

the row and null spaces of A:

V̂ = B {Rn} = B
{

C(AT)
}

∪ B {N (A)}

• Û is a basis for the column space of A: V̂ = B {C(A)}

• U is a basis for the output space (AKA co­domain), which is

the union of the bases for the column and the left null spaces

of A:

Û = B {Rm} = B {C(A)} ∪ B
{

N (AT)
}
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Fig. 13.7 The shapes of U ,Σ and V in SVD when A is a general, rank­deficient matrix.

Now we can confidently state V −1 = V T and U−1 = UT and

matrix algebra we performed earlier can be repeated without the hats

and everything is perfect.

We have one more way of arriving at this realization, by noting that

since these Gram matrices, ATA and AAT have the same rank as A,

which is r, we have r positive eigenvalues and as many orthogonal

eigenvectors. The rest of the eigenvalues (n−r forATA andm−r for

AAT) are zeros. Remembering that the eigenvectors corresponding

to zero eigenvalues are, in fact, the basis for the null space of the

matrix, we can complete theU ,Σ andV (the unhatted ones) matrices.

To get the final answer of SVD, we padU with the basis of the left null

space N (AT) and V with the basis of the null space N (A), which

are really the eigenvectors of AAT and ATA. They are, indeed, the

missing left and right singular vectors we are seeking. And the Σ
matrix gets the correct zero eigenvalues to pad from the (r + 1)th to

the nth diagonal position, resulting in Figure 13.7 and the following
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equations.

U =





| | · · · |
u1 u2 · · · um

| | · · · |



 ∈ Rm×m = [ui]

V =





| | · · · |
v1 v2 · · · vn

| | · · · |



 ∈ Rn×n = [vi]

Σ =

















σ1 0 · · · 0 · · · 0
0 σ2 · · · ... · · · 0
...

...
. . .

... · · · ...

0 0 · · · σr · · · 0
...

...
...

...
. . .

...

0 0 0 0 0 0

















∈ Rm×n = [σi]

(13.2)

The Σ matrix is arranged such that σ1 g σ2 g · · · σr g 0 so that the

first singular value is the most important one. The singular vectors

are eigenvectors of ATA and AAT:

ATAV = V Σ2 and AATU = UΣ2 (13.3)

We can summarize the singular value decomposition of A =
UΣV T (where A ∈ Rm×n and rank(A) = r) in a few bullet points:

1. The matrix V ∈ Rn×n is the right1 singular matrix.

(a) It is an orthonormal basis for Rn, the domain of the trans­

formation A : Rn 7→ Rm.

(b) The columns of V ,vi are the right singular vectors.

(c) vi, 0 < i f r are eigenvectors of ATA.

(d) The first r of them span the row space of A, C(AT).

(e) The rest (n− r) span its null space, N (A).

(f) vi, r < i f n are found (if needed) by computing the null

space.

2. U ∈ Rm×m is the left singular matrix.

1To remember whether U or V is left or right, note that the left singular matrix U appears
on the left in UΣV

T and V on the right.
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(a) It is an orthonormal basis for Rm, the output space (AKA

the co­domain) of the transformation A : Rn 7→ Rm.

(b) Its columns, ui, are the left singular vectors.

(c) ui, 0 < i f r are the eigenvectors of AAT.

(d) Again, the first r of them form a basis for the the column

space C(A).

(e) The rest (m−r) of them span the left null space,N (AT).

(f) ui, r < i f m are found (if needed) by computing the

left null space.

3. The diagonal matrix Σ ∈ Rm×n (the same size as A) contains

the r singular values.

(a) The first r singular values, σi, 0 < i f r are positive.

(b) They are the nonnegative square roots of ATA (for tall

matrices) or AAT (for wide ones).

(c) The rest of the singular values, σi, r < i f min(m,n),
are all zeros.

(d) By convention, the singular values are arranged in de­

scending order:

σ1 g σ1 g · · · g σr

These bullet points are illustrated in Figure 13.7, the full­blown

SVD. Since only the first r singular values are nonzero (and also

because the basis vectors vi of the null space map to 0 ∈ Rm), we

can ignore the last (m − r) columns of U and (n − r) columns of

V . We can also take the leading r × r part of Σ to come up with a

“thin” or “economical” version of SVD. Note that this version does

not involve any approximations; it is merely a choice of ignoring the

zeros that do not matter any way.

We also have the following properties for singular values:

• For square matrices, the product of the singular values is the

determinant. For instance, for A ∈ R2×2, σ1σ2 = λ1λ2 = |A|.

• For A ∈ R2×2, σ1 g λ1 g λ2 g σ2
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13.3 Why SVD Is Important

13.3.1 Data Compression

Remember that the Spectral Theorem (§12.1.1, page 222) allowed us

to write:

A =
n

∑

i=1

λiqiq
T

i

from the EVD of a real, symmetric A ∈ Rn×n = QΛQT.

In SVD, we have A ∈ Rm×n = UΣV T (for any matrix). This

product also can be expanded as:

A =
r

∑

i=1

σiuiv
T

i (13.4)

where we used the fact from Eqn (13.2) that the diagonal matrix Σ
has only the first r = rank(A) nonzero elements, and therefore, the

sum runs from 1 only to r, not to m or n, the matrix dimensions.

It is perhaps important enough to reiterate that Eqn (13.4), by

itself, is not an approximation just because we are summing only up

to r, which is to say, we are using the “economical” (hatted) SVD

matrices. Even if we were to use the full matrices, the multiplication

ΣV T would have resulted in a matrix (∈ Rm×n) with the last n − r
columns zero because only the first r singular values (σi, 0 < i f r)

are nonzero.

Each term in the summation in Eqn (13.4), Ai = uiv
T

i , is a rank­

one matrix (because it is a linear combination of one row matrix

vT

i , by the row­picture of matrix multiplication. The first of them,

A1 = u1v
T

1 , is the most important one because σ1 is the largest

among the singular values. We can therefore see that A1 is the best

rank­one approximation of the original matrix A.

Let’s say A is a megapixel image of size 1000 × 1000. It takes a

million bytes to store it. A1, on the other hand, takes up only 2001

bytes 1(σ1) + 1000(ui) + 1000(ui). If A1 is not good enough, we

may include up to k such rank one matrix at a storage cost of 2001k,

which is smaller than a million for k < 499. Typically, the first few

tens of σi would be enough to keep most of the information in A.

In general, in order to store up to k rank­one approximations of

A ∈ Rm×n, we need k(m+ n+ 1) units of memory, which could be



Why SVD Is Important 265

significantly smaller than mn. The Singular­Value Decomposition,

therefore, can be the basis of a powerful data compression algorithm.

Although we have more powerful techniques than the plain old SVD

for image compression, it is a technique that still inspires some re­

searchers2.

13.3.2 Principal Component Analysis

In data science, SVD is commonly used for dimensionality reduction

to uncover the low­dimensional patterns in the data. Although it may

be called the Principal Component Analysis (PCA), it is essentially

SVD using different jargon and with one extra step. We will stick

with our current notation to describe PCA.

Let’s say A ∈ Rm×n is a data matrix, such as the Young Adult

dataset we used in Figure 10.4 while studying multiple linear re­

gression. Here, we have an observation as a row in the matrix, and

variables along which the observations are made in the columns. We

have m observations along n variables (xj, 1 f j f n), and as we

saw multiple times, mk n.

The first step in PCA is to compute one extra row called the mean

(as in average) row, and subtract it from all other rows.

µj =
1

m

m
∑

i=0

aij = E[xj]; aij ← aij − µj

Thus, we get the so­called zero­centered data in our A matrix (which

we will callA0 to avoid confusion), where each column has a mean of

0. Now, the Gram matrix, AT

0A0 becomes a much smaller matrix in

terms of the number of elements because AT

0A0 ∈ Rn×n and nj m.

It also becomes proportional to the covariance matrix of the data.

To see how this magic happens, we only need to expand the product.

Calling AT

0A0 by a new name, C ∈ Rn×n = [cij] = AT

0A0, we can

write:

cij = aT

i(0)aj(0) =
m
∑

k=0

(aki − µi)(akj − µj)

2A quick search revealed this article from 2017.

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0172746
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which is the covariance between the ith and j th variables. For example,

if we set i = j to look at the diagonal elements of C, we get

m
∑

k=0

(aki − µi)(aki − µi) = m (aki − µi)
2 = mVar(xi)

which is the variance of the ith variable xi (times the number of

observations).

Taking the SVD of A0 is the same as finding the eigenvalues

and vectors of C, the elements of which are proportional to the

covariances of the variables in the data. Therefore, as we saw in

§11.5 (page 201), what PCA does is to find directions along which

the covariance is the highest, second highest and so on. In other

words, it gives us a hierarchical coordinate system, in which the first

direction corresponds to the highest variance in the data, the next one

the second highest and so on. Note that it comes from the data directly,

without assuming any kind of underlying probability distribution for

the variables.

Once we have the SVD of A0, we can look at the right singular

vectors vi, which are the eigenvectors of AT

0A0 (as in Eqn (13.3))

and write:

AT

0A0V = V Σ2 (13.5)

We know that the singular values are sorted so that σ1 is the largest.

Using the insights about what eigen­analysis does (from §11.5, page

201), we make the following observations:

1. The eigenvectors of the Gram matrix AT

0A0 represent the di­

rections in its row space along which the variances in the data

are sorted descending. Remembering that AT

0A0 and A0 have

the same row space from §12.6 (page 235), the eigenvectors

in the columns of V are the directions in the data space along

which we have the sorted variances as well.

2. The matrix T = A0V holds the principal components of the

data (the first of which is a linear combination of the columns

of A0 with the largest variance, the second the second largest

and so on).

3. V , whose columns specify the coefficients required in the linear

combinations, is called the loading.



Why SVD Is Important 267

4. The elements of Σ tell us how much variance each principal

component holds. If we want, for instance, to capture 90%

of the variance in the data, we start with the first component,

and look at σ1. If it is less than 90%, we keep adding the next

component until the cumulative sum of σi, 1 f i f k crosses

the required threshold of variance, 90%.

5. The k principal components are then used as engineered fea­

tures in our machine learning algorithm. Typically, k j n,

resulting in significant dimensionality reduction. Although its

description looks different, what we are doing here is not unlike

taking the first k terms in the summation in Eqn (13.4).

6. Dimensionality reduction has the added advantage of smooth­

ing out the noise in the data. Much like fitting a line or a

polynomial on a bunch of (x, y) data points may result in a bet­

ter fit than the collection of the points themselves, which may

be subject to statistical or measurement fluctuations, a lower

rank approximation of the data matrix may result in a better

model.

We discussed the whole PCA topic as though it was a sub­topic of

SVD. For historical reasons, however, PCA may appear with different

jargon and notations in other sources, with no reference to SVD. The

mathematics behind it is the same as our discourse here. It has to be,

for mathematical truth is singular.

A Simulated Example

As a well­established and widely used technique, PCA is available

in all modern statistical applications. In order to make its discussion

clear, we will use R and create a toy example of it using simulation.

We are going to simulate a multivariate normal distribution, centered

at µ with a covariance matrix S, generating 1000 tuples (x, y).

µ =

[

2.5
2.5

]

S =

[

2 1
1 2

]

Since we set the parameters for the simulation, we already know what

to expect: We started with the covariance matrix S, and we expect

the bivariate normal distribution to show up as an ellipse, centered at

(1, 3) and with the major and minor axis along the eigenvectors s1
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and s2 of S. The lengths of the axes are going to be the eigenvalues,

λi, as we established in §11.5 (page 201).

Running the eigenvalue decomposition on S in R, we get:

eigen() decomposition

$values

[1] 3 1

$vectors

[,1] [,2]

[1,] 0.7071068 -0.7071068

[2,] 0.7071068 0.7071068

In this output, $values are our eigenvalues λi , which says the vari­

ances along the major and minor axes of the generated data in Fig­

ure 13.8, left panel, are 3 and 1. Therefore the lengths of the axes

(σi) are the square roots, namely about 1.73 and 1, which is what

we see in Figure 13.8, on the left (except that we scaled the standard

deviations by a factor of two, so that 95% of the points are within the

ellipse).
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Fig. 13.8 Left: Example of simulated (x, y) pairs, showing the elliptical shape, the

directions and sizes of the major and minor axes. Right: The “biplot” from the PCA

function in R.

Once we have the 1000 generated rows of simulated data, we run

PCA on it, and look at what it can reveal about it.

Standard deviations (1, .., p=2):

[1] 1.718043 1.018423
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Rotation (n x k) = (2 x 2):

PC1 PC2

[1,] -0.7043863 -0.7098168

[2,] -0.7098168 0.7043863

From the PCA output, we see the standard deviations σ1 and σ2, close

to what we specified in our covariance matrix, S, as revealed by the

eigen­analysis on it. Ideally, the values should have been
√
3 and√

1, but we got 1.718 and 1.018—close enough. The first principal

component is linear combination of x and y with coefficients−0.704
and −0.710. Note that SVD vectors are unique in values only; their

signs are not fixed.

The right panel in Figure 13.8 is the so­called “biplot” of the

analysis, which shows a scatter plot between the first and second

principal components, as well as the loading of the original variables.

The first thing to note is that PC1 and PC2 are now uncorrelated standard

normal distributions, as indicated by the circle in the biplot rather than

the ellipse in the data.

The directions shown in red and blue are to be understood as

follows: The first variable x “loads” PC1 with a weight of −0.704
and and PC2 −0.710 (which form the first right singular vector, v1).

It is shown as the red arrow in the biplot, but with some scaling so

that its length corresponds to the weight. The second variable x loads

PC1 and PC2 at −0710 and 0.704 (the second right singular vector,

v2), shown in the blue arrow, again with some scaling. Since both

the principal components load each variable with similar weights, the

lengths of the red and blue arrows are similar.

13.4 Pseudo­Inverse

We talked about the left and right inverses in §5.4 (page 102).

Eqn (5.2), for instance, shows how we define the left inverse of a

“tall,” full­rank matrix. The SVD method gives us another way to

define an inverse of any matrix, called the pseudo­inverse, A+.

Let’s first define what we are looking for.



270 Singular Value Decomposition

PCA on Iris Dataset

All introductory data analytics courses will deal with the Iris dataset at some point.
This dataset contains 150 flower measurements along four variables (Sepal Length,
Sepal Width, Petal Length and Petal Width) from three different iris species (Setosa,
Versicolor and Virgnica). There are 50 data points for each species.

Since creating two principal components out of two variables (as we did with the
simulated data) does not make much sense, let’s try PCA on the Iris dataset. Running
PCA on it gives us the following output:

Standard deviations (1, .., p=4):

[1] 2.0562689 0.4926162 0.2796596 0.1543862

Rotation (n x k) = (4 x 4):

PC1 PC2 PC3 PC4

Sepal.Length 0.36138659 -0.65658877 0.58202985 0.3154872

Sepal.Width -0.08452251 -0.73016143 -0.59791083 -0.3197231

Petal.Length 0.85667061 0.17337266 -0.07623608 -0.4798390

Petal.Width 0.35828920 0.07548102 -0.54583143 0.7536574

Pseudo­Inverse

Definition: A matrix A ∈ Rm×n has an associated pseudo­inverse

A+ if the following four criteria are met:

1. AA+A = A: Note that AA+ does not have to be I .

2. A+AA+ = A+: The product A+A does not have to be I

either.

3. (A+A)
T
= A+A: Like the Gram matrix, AA+ needs to be

symmetric.

4. (AA+)
T
= AA+: The other product, A+A should be sym­

metric too.

With the SVD of A, we can come up with A+ that satisfies the

four criteria.

A = UΣV T =⇒ A+ = V Σ+UT (13.6)

where Σ+ is a diagonal matrix with the reciprocals of σi when σi ̸=
0 and zero when σi = 0. In practice, since floating point zero

comparison is always troublesome in computing, we will use a lower

bound for σi. Note that Σ+ has the same size as AT, while Σ has the

same size as A. In other words, for A ∈ Rm×n, Σ+ ∈ Rn×m.
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At this stage of our Linear Algebra learning, it should be trivial for

us to verify that this definition of A+ does satisfy the four criteria.

We only need to note that U and V are square, full rank, orthonormal

matrices, with the associated property UUT = UTU = Im and

V V T = V TV = In. Remember that U and V are, in fact, the

bases for Rm and Rn respectively.

It is possible to rewrite the pseudo­inverse using the “thin” SVD,

where we have the hatted matrices. The shapes of these matrices are

specified in Eqn (13.2) and shown again pictorially in Figure 13.6,

which shows the typical case in data science, where we have a full­

column­rank “tall” matrix A ∈ Rm×n,m > n, rank(A) = n: All the

columns in A are linearly independent. U contains the left singular

vectors, which form a complete basis for the output space Rm. The

first n of these vectors are a basis for the column space C(A). The

rest m − n vectors are the basis for the left null space N (AT). We

have n singular values, in decreasing order, in the leading diagonal of

Σ. Since Σ has m rows (same shape as A), we have m−n zero rows.

V ∈ Rn×n holds a full basis for Rn. There are no other dimensions

left anywhere to account for.

Figure 13.7 shows the most general case of a rank­deficient matrix

A ∈ Rm×n, rank(A) = r < min(m,n). The left and right singular

matrices (U and V ) are both square matrices forming the full basis

for Rm×m and Rn×n respectively. The first r columns of both contain

the bases for the column space and the row space ofA, namely C(AT)
and C(A). The rest of the columns are the bases for the null spaces:

The last m− r columns in U span the left null spaceN (AT) and the

last n − r columns of V span the (right) null space N (A). And, as

for the singular values in Σ, its first r of them are nonzero, the rest

are all zeros.

As we can see in Figure 13.7, the columns (and rows) to the right

of (and below) the thin lines in U ,Σ and V T are there to account for

the null spaces. They do not affect the product at all because the zeros

in Σ will kill them anyway. We can, therefore, write an economical

SVD for A keeping only the columns (and rows) to the left of (and

above) the thin lines in U ,Σ and V T. We call these smaller matrices

Û , Σ̂ and V̂ T. We can then write:

A = ÛΣ̂V̂ T U ∈ Rm×r, Σ ∈ Rr×r, V ∈ Rn×r



272 Singular Value Decomposition

Since we defined Σ+ appearing in Eqn (13.6) as having nonzero

values only in the leading r × r submatrix, we can see that only the

first r columns of U and V have any bearing on A+. Therefore, we

can write it as:

A+ = V̂ Σ̂−1ÛT (13.7)

Note that Σ̂+ is indeed Σ̂−1 because Σ̂ is a full­rank, diagonal matrix

and its inverse is another matrix with the reciprocals of the diagonal

elements along its diagonal:

Σ̂−1 =









1

σ1
0 · · · 0

0 1

σ2
· · · ...

...
...

. . .
...

0 0 · · · 1

σr









∈ Rr×r =

[

1

σi

]

Since we are working with “economical” version Σ̂, there are no

divide­by­zero errors to worry about when computing its inverse: all

the singular values σi are nonzero.

Note that in Eqn (13.6), the matrices of singular vectors on the

right are all square and invertible ones. We are justified in taking

their inverses (with U−1 = UT and V −1 = V T). But their product

is not a square matrix, and we are probably not justified in calling it an

inverse, which is one of the reasons why we call it a pseudo­inverse.

A ∈ Rm×n and A+ ∈ Rn×m and both AA+ and A+A are valid

matrix multiplications.

The pseudo­inverse reduces to the left­inverse for full­column­rank

matrices, and the right­inverse for the full­row­rank matrices. And

of course, for a full­rank, square matrix, it is the plain old inverse. It

is indeed worth our time to verify these statements, which is done in

a box in this chapter.

The first criterion in the definition of A+ says AA+A = A, which

means AA+Ax = Ax or AA+b = b in our favorite equation

Ax = b. Let’s consolidate:

AA+Ax = Ax = b

AA+ (Ax) = Ax = b

AA+b = Ax = b

What is it telling us? Let’s say A+b = y. Then we have the

equation Ay = b. Earlier, in §11.9.4, page 219, we argued that this,
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in conjunction with Ax = b, implied that x = y because of the

uniqueness of linear combinations. Here’s another argument: Since

we have Eqn (13.7), we can see that A+b is in the row space of A

because A+b = V̂ Σ̂−1ÛTb is a linear combinations of the columns

of V̂ . Since V̂ is a basis for C(AT), A+b ∈ C(AT). In other words,

for a nonzero b, y is in C(AT), which is to say, for a b ∈ C(A), we

have A+b = y with y ∈ C(AT). Thus, we have the inverse mapping

A+ : C(A) 7→ C(AT), leading to our closing discussion.

13.5 Fundamental Spaces and SVD

I * =2 = all possible I N * =3 = all possible & impossible N!: = ;

L 3 : dim = O
Column SpaceL 3) : dim = O

Row Space 3P ÿ R

$ %
.
:

dim = +2 -

Left Null Space

$ % :

dim = . 2 -

Null Space 3P*ÿ
2

32ÿ 2

! 6 =
S
ÿ=

T

! * =
T×S

rank ! = @

/ ,
/ /

/
0

ï

1 ,
1 /

1
0

ï

3(P + P*
) ÿ R

P ÿ 3+R

2 ÿ 3+R
*

2 ÿ 3+2

P ÿ 3+(R + R
*)

: = !
X
;

!
X
: =

T
ÿ=

S

!
X
* =

S×T
rank !

X
= @

, !
"
#

, !
"
$

,
%

ï

. !
"
#

. !
"
$

.
&

ï

Fig. 13.9 The elegant symmetry of the four fundamental spaces, completed by the pseudo­

inverse A+.

Singular Value Decomposition and the subsequent definition of the

pseudo­inverse complete the beautiful symmetry of the fundamental

spaces we started in Chapter 9. A is a mapping from Rn to Rm: It

takes vectors x ∈ Rn and gives us vectors b ∈ Rm. Or, A : Rn 7→
Rm. From the row space to the column space of A (from C(AT) to

C(A)), the mapping is one­to­one.

A+ does just the reverse: A+ : Rm 7→ Rn. As Figure 13.9 shows,

it does it in a completely symmetric fashion. It is a one­to­one

mapping from C(A) to C(AT), and it takes the null spaces to their

right counterparts. Instead of describing the picture using our words,
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Pesudo­Inverse vs. Other Inverses

The pseudo­inverse reduces to the old familiar double­sided inverse (A−1) in the case

of full­rank, square matrix. It also reduces to the left inverse (A
−1

Left) and the right inverse
when they are defined, as shown below.

Pseudo-inverse to Double-Sided Inverse: If A is a full­rank, square matrix (A ∈

Rn×n

, rank(A) = n), the A
+ reduces to A

−1. Since rank(A) = n, rank
(

A
T
A
)

=

n =⇒ A
T
A has n (positive) eigenvalues =⇒ Σ is full rank. We also have, in

A = UΣV
T
,U

−1 = U
T
, UU

T = In, V −1 = V
T
, V V

T = In and

Σ =







σ1 · · · 0
...

. . .
...

0 · · · σn






, Σ

+ =







1

σ1

· · · 0
...

. . .
...

0 · · ·
1

σn






= Σ

−1
.

Now, A−1 = (V T)−1
Σ

−1
U

−1 = (V −1)−1
Σ

+
U

T = V Σ
+
U

T = A
+.

Pseudo-inverse to Left Inverse: If A is a full­column­rank tall matrix (A ∈

Rm×n

, rank(A) = n < m), A+ reduces to: A
−1

Left = (AT
A)−1

A
T. Here, we have

U
−1 = U

T
, UU

T = Im, V −1 = V
T
, V V

T = In and

Σ =





















σ1 · · · 0
...

. . .
...

0 · · · σn

0 · · · 0
... · · ·

...
0 · · · 0





















, Σ
+ =







1

σ1

· · · 0 0 · · · 0
...

. . .
...

... · · ·

...

0 · · ·
1

σn

0 · · · 0






=⇒ Σ

+
Σ = In.

Consider A+
A = (V Σ

+
U

T)(UΣV
T) = V Σ

+(UT
U)ΣV

T = V (Σ+
Σ)V T =

V InV
T = In. Thus A+ is the left inverse of A =⇒ A

+ = A
−1

Left = (AT
A)−1

A
T.

Pseudo-inverse to Right Inverse: If A is a full­row­rank wide matrix (A ∈

Rm×n

, rank(A) = m < n), A+ reduces to: A
−1

Reft = A
T(AA

T)−1. Here again, we

have U
−1 = U

T
, UU

T = Im, V −1 = V
T
, V V

T = In and

Σ =







σ1 · · · 0 0 · · · 0
...

. . .
...

... · · ·

...
0 · · · σm 0 · · · 0






, Σ

+ =





















1

σ1

· · · 0
...

. . .
...

0 · · ·
1

σm

0 · · · 0
... · · ·

...
0 · · · 0





















=⇒ ΣΣ
+ = Im.

In this case, consider AA
+ = (UΣV

T)(V Σ
+
U

T) = UΣ(V T
V )Σ+

U
T =

U(ΣΣ
+)UT = UImU

T = Im. Thus A
+ is the right inverse of A =⇒ A

+ =

A
−1

Reft = A
T(AA

T)−1
.

it is perhaps wiser to let it speak its own thousand words. Let’s stare

at it to appreciate its exquisite completeness.
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If we can allow ourselves to be mesmerized by the beauty and

symmetry of this picture and the elegance of the path that brought

us here, perhaps we have earned the right to call ourselves mathe­

maticians or computer scientists. And this picture, perhaps, is the

appropriate point to bring this book to its conclusion.
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Summing Up. . .

What we want is to see the child in pursuit of knowledge,

and not knowledge in pursuit of the child.

—George Bernard Shaw

We have now come to the end of our journey in the wonderful

world of Linear Algebra. Although we have covered a lot of mate­

rial, we have only scratched the surface of this vast and deep branch

of mathematics, for Linear Algebra is a very well­established field

of endeavor. Depending on the domain where it is applied, it may

appear different. Studied as a pure math course in a graduate level

course, Linear Algebra may focus on algebraic structures and gen­

eralized fields. When applied to quantum mechanics, it may look

like a different beast with alternative notations, working in infinite

dimensional spaces and vectors that are functions, where the focus is

on the physical interpretation of eigenvalues and vectors.

Even in our own field of computer science, when we go through the

literature, we may come across different notations and focus, depend­

ing on the background of the authors, and the specific applications
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under their investigation. Despite this vastness and diversity, our

hope is that we have covered enough ground to dissect the intricacies

of any of these applications and styles of discourse. To be sure, the

discourses may sound unfamiliar, and the applications may look diffi­

cult, even daunting, but their difficulty is one of notations and jargon,

not of the underlying mathematics and foundational concepts.

More importantly, we hope that our interest in this particularly

beautiful field of mathematics has been kindled, so that we look

forward to exploring more, learning further and applying the insights

in enriching our professional life as computer scientists.



Glossary

The symbols, terms and abbreviations most commonly used in this

book are listed and described below for easy reference.

We can also refer to an Online Glossary of Linear Algebra terms

and definitions, courtesy of Robert Campbell of UMBC.

Scalar Scalars are written in lowercase letters, e.g., s, similar to the

notation for the elements of vectors and matrices.

Vectors Bold lowercase letters represent vectors, e.g., x, with ele­

ments xi. Vectors are always column matrices, and are writ­

ten with square brackets when needed. Note, however, that

SageMath writes vectors as (x1, x2, · · · , xm) (using parenthe­

ses with commas between the elements), and we may use that

notation as well, albeit rarely.

Matrices Bold capital letters represent matrices, e.g., A. For the

elements of A, the corresponding lowercase letter, aij is used.

When explicitly writing out the elements of the matrix, square

brackets are used.

Elements of Matrices: The elements of matrices, being scalars, are

written using lowercase letters. When we write A =
[

aij
]

, we

mean that A is a matrix with a general element aij in the ith

row and j th column. We also write A = [aj ] to indicate that

A is composed of column vectors, with ai as the j th column.

Although used only a couple of times in the book, we also write

https://www.math.umbc.edu/~campbell/Math221/Glossary/


Glossary 279

A = [aT

i ] to denote the matrix A consisting of row vectors, aT

i

as the ith row.

Determinant: Our favorite symbol for determinant is a vertical line:

The determinant of A is |A|.

Transpose: The symbol T represents transpose. A ∈ Rm×n =⇒
AT ∈ Rn×m.

Hermitian Transpose: The complex conjugate transpose of A is

indicated as A†, although it is used very sparingly in this book

Fields: Our matrices and vectors are almost always over the field of

reals, which is represented as R. We will write A ∈ Rm×n

and x ∈ Rm. Although we may not use it, it is possible to

have matrices and vectors over other fields and rings, such as

integers (Z), rationals (Q) or complex (C).

Spaces: We use calligraphic symbols such as S for spaces. In par­

ticular, the column space of A is C(A), row space C(AT), null

space N (A) and its left null space is N (AT).

Math Symbols: In definitions and equations, we will use common

mathematical symbols such as:

• ∀: For all or for any. ∀x means for any vector x.

• ∈: Is a member of the set. s ∈ R says that the scalar s is

a member of the set of reals.

• =⇒ : Implies. i, j ∈ Z =⇒ i
j
∈ Q

• ¢,¦: Subset of. Z ¦ Q ¦ R ¦ C.

nonstandard Notation: We use the symbol · in a manner not seen

elsewhere: We write A = [I · F ], for instance, to indicate A

is a matrix composed of the columns of the identity matrix and

the matrix F , but the columns are not necessarily in the order

in which they appear in the constituent matrices. They may be

“shuffled.”

Norm: Double vertical lines indicate the norm (usually the Euclidean

norm, usually of a vector). ∥x∥ is the norm of the vector x.
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SageMath and Labs

In order to illustrate the topics in a hands­on manner, we will be using some

exercises to be run on SageMath. At the time of writing this book, SageMath is

on version 9.2, and can be downloaded from its website. However, we will be

using version 9.1 because of some problems of 9.2 on some platforms. However,

SageMath is a stable application, and the actual version used is not expected to make

much difference in the learning experience. We gratefully acknowledge the efforts

of the SageMath team in making their excellent tool available freely.

Resources

This book is written explicitly as a textbook to support a corresponding course at

Singapore Management University. For each weekly session of our course, which

corresponds to a chapter in the book, we will have a curated list of videos either as

preparatory, or for review and problem solving.

Linear Algebra is a well­established branch of mathematics, and we have an

abundance of online resources to draw from. Here are some more resources:

MIT Open Course Ware 18.06SC: Available on YouTube for free, these excel­

lent lectures by Gilbert Strang and associated recitations are a great resource

for our course. Many of the suggested readings (especially the problem

solving kind) in this book are drawn from this resource.

3Blue1Brown: Another excellent YouTube channel on mathematics, provided for

free by Grant Sanderson, is a must watch for students of applied mathematics

and computer science. We have listed several videos from its the playlist

Essence of Linear Algebra in our chapters.

https://www.youtube.com/playlist?list=PL221E2BBF13BECF6C
https://www.youtube.com/playlist?list=PL221E2BBF13BECF6C
https://www.youtube.com/playlist?list=PLZHQObOWTQDPD3MizzM2xVFitgF8hE_ab
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Gilbert Strang “Linear Algebra and its Applications”: This is the book version

of the lectures in 18.06SC, and may be useful for sample problems and as

lecture notes. However, lecture notes, problem sets and lecture transcripts

from the book are all available online at MIT Open Courseware.

Philip Klein “Coding the Matrix: Linear Algebra through Computer Science

Applications”: A very comprehensive and well­known work, this book

teaches Linear Algebra from a computer science perspective. Some of the

labs in our course are inspired by or based on the topics in this book, which

has an associated website with a lot of information.

Books

In addition to this textbook, “Linear Algebra for Computer Science”, here are some

other books that we can freely download and learn from:

Jim Hefferson “Linear Algebra”: This book uses SageMath and has tutorials and

labs that can be downloaded for more practice from the author’s website.

Robert Beezer “A First Course in Linear Algebra”: Another downloadable book

with associated web resources on SageMath. In particular, it has an on­line

tutorial that can be used as a reference for SageMath.

Stephen Boyd “Introduction to Applied Linear Algebra”: This well­known book

takes a pragmatic approach to teaching Linear Algebra. Commonly referred

to by the acronym (VMLS) of its subtitle (“Vectors, Matrices, and Least

Squares”), this book is also freely downloadable and recommended for

computer science students.

Copyright

A legal disclaimer: The websites and resources listed above are governed by their

own copyright and other policies. By listing and referring to them, we do not imply

any affiliation with or endorsement from them or their authors.

https://ocw.mit.edu/courses/mathematics/18-06sc-linear-algebra-fall-2011/
https://codingthematrix.com
https://hefferon.net/linearalgebra/
http://linear.ups.edu/download.html
http://linear.pugetsound.edu/html/sage.html
http://linear.pugetsound.edu/html/sage.html
http://vmls-book.stanford.edu
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